
Rhythmyx

Internationalizing
and Localizing

Rhythmyx
6.5.2

 Printed on 17 October, 2007

Copyright and Licensing Statement

All intellectual property rights in the SOFTWARE and associated user documentation, implementation
documentation, and reference documentation are owned by Percussion Software or its suppliers and are
protected by United States and Canadian copyright laws, other applicable copyright laws, and
international treaty provisions. Percussion Software retains all rights, title, and interest not expressly
grated. You may either (a) make one (1) copy of the SOFTWARE solely for backup or archival purposes
or (b) transfer the SOFTWARE to a single hard disk provided you keep the original solely for backup or
archival purposes. You must reproduce and include the copyright notice on any copy made. You may not
copy the user documentation accompanying the SOFTWARE.

The information in Rhythmyx documentation is subject to change without notice and does not represent a
commitment on the part of Percussion Software, Inc. This document describes proprietary trade secrets of
Percussion Software, Inc. Licensees of this document must acknowledge the proprietary claims of
Percussion Software, Inc., in advance of receiving this document or any software to which it refers, and
must agree to hold the trade secrets in confidence for the sole use of Percussion Software, Inc.

Copyright © 1999-2007 Percussion Software.
All rights reserved

Licenses and Source Code
Rhythmyx uses Mozilla's JavaScript C API. See http://www.mozilla.org/source.html
(http://www.mozilla.org/source.html) for the source code. In addition, see the Mozilla Public License
(http://www.mozilla.org/source.html).

Netscape Public License

Apache Software License

IBM Public License

Lesser GNU Public License

Other Copyrights
The Rhythmyx installation application was developed using InstallShield, which is a licensed and
copyrighted by InstallShield Software Corporation.

The Sprinta JDBC driver is licensed and copyrighted by I-NET Software Corporation.

The Sentry Spellingchecker Engine Software Development Kit is licensed and copyrighted by Wintertree
Software.

The Java™ 2 Runtime Environment is licensed and copyrighted by Sun Microsystems, Inc.

The Oracle JDBC driver is licensed and copyrighted by Oracle Corporation.

The Sybase JDBC driver is licensed and copyrighted by Sybase, Inc.

The AS/400 driver is licensed and copyrighted by International Business Machines Corporation.

The Ephox EditLive! for Java DHTML editor is licensed and copyrighted by Ephox, Inc.

This product includes software developed by CDS Networks, Inc.

The software contains proprietary information of Percussion Software; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright law. Reverse
engineering of the software is prohibited.

http://www.mozilla.org/source.html
http://www.mozilla.org/source.html

Due to continued product development this information may change without notice. The information and
intellectual property contained herein is confidential between Percussion Software and the client and
remains the exclusive property of Percussion Software. If you find any problems in the documentation,
please report them to us in writing. Percussion Software does not warrant that this document is error-free.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written
permission of Percussion Software.

AuthorIT™ is a trademark of Optical Systems Corporation Ltd.

Microsoft Word, Microsoft Office, Windows®, Window 95™, Window 98™, Windows NT®and MS-
DOS™ are trademarks of the Microsoft Corporation.

This document was created using AuthorIT™, Total Document Creation (see AuthorIT Home -
http://www.author-it.com).

Percussion Software
600 Unicorn Park Drive
Woburn, MA 01801 U.S.A.
 781.438.9900
Internet E-Mail: technical_support@percussion.com
Website: http://www.percussion.com

http://www.author-it.com/

 i

Contents

Introduction to Internationalization and Localization in Rhythmyx 3

Determining System Requirements 5

Modeling Internationalization of a Rhythmyx Content Management System 7
Modeling Assembly for Internationalization ..8
Modeling Internationalized Workflows..9

Defining the Content Relationship Model for Translations...9
Modeling Internationalized Workflow Processes..9
Spinning Off Translation Versions of Content Items ..10

Modeling Publishing...11

Implementing Internationalization 13
Internationalization Support on the Rhythmyx Server..14
Localizing the EditLive Text Editor ...17
Implementing Internationalized Assembly ...18

Implementing Internationalization of Templates...18
Implementing Internationalized Numbers and Date Formats ..20
Changing Output Character Sets ...21
Creating Automatic Links to Other Localized Versions of Content..21

Localizing the Business User Interface...22
Maintaining Locales ..23
Preparing XSL Files for Localization..27
Localizing JavaScript Files..29
Localizing JSPs ...30
Using Locale-specific Images ...31
Rhythmyx Language Tool ...31

Defining Translation Properties..35
Translation Setting Editor..36
Creating Translation Settings ..37
Modifying Translation Settings ...37
Removing a Translation Setting ..38

Implementing Automated Translation ..39
Example Auto Translation Implementation...40
Configuring the sys_createTranslations Workflow Action ...44

Implementing Internationalized Publishing ..45
Implementing Language-centric Publishing Models ...45
Implementing Content-centric Publishing Models ..45

ii Contents

Full-text Search in Globalized Environments ...46

Index 47

 3

C H A P T E R 1

Introduction to Internationalization
and Localization in Rhythmyx
Internationalizing and Localizing Rhythmyx explains how to model a Rhythmyx Content Management
System (CMS) for internationalization and then how to implement your model. The document assumes
that you are developing a new system for internationalization. It also assumes that you are generally
familiar with the process of modeling and implementing a non-internationalized CMS, either through
training on Rhythmyx or through reading the Rhythmyx Implementation Guide. If you are not familiar
with that document, you should read it before proceeding with this document.

Internationalization is the process of implementing a Rhythmyx CMS to support content in multiple
languages. The Rhythmyx Content Model provides a firm foundation for internationalization because it
provides you with control over each item. Rhythmyx has functionality that allows you to determine which
items to translate, and the languages into which to translate them. You can implement your system to
create translation Versions of items automatically or allow your users to determine whether an item should
be translated.

Rhythmyx uses the Java definition of Locale, which identifies a combination of language and
geographical, political, and cultural region. For more details about internationalization in Java, see
http://java.sun.com/j2se/1.5.0/docs/guide/intl/overview.html.

http://java.sun.com/j2se/1.5.0/docs/guide/intl/overview.html

 5

C H A P T E R 2

Determining System Requirements
When internationalizing Rhythmyx, the only special requirement you need to consider is the character set
of your database. The default character set for Rhythmyx is UTF-8, which is generally adequate for most
European languages. If you will store Asian languages that require multiple-bit characters, such as
Korean or Japanese, you should install your database with support for UTF-16. It is best to install the
database with support for the correct character set from the beginning. Converting a database to a
different character set is possible, but very complicated.

 7

C H A P T E R 3

Modeling Internationalization of a
Rhythmyx Content Management
System
Internationalization of a Rhythmyx content management system involves three of the four engines in
Rhythmyx, Assembly, Workflow, and Publishing. You do not need to modify your content model to
accommodate internationalization.

Implementing internationalization is much easier if you model your internationalized CMS. You will then
save time implementing the model.

8 Rhythmyx Internationalizing and Localizing Rhythmyx

Modeling Assembly for Internationalization
When modeling internationalization of Content Assembly, Templates fall into three groups:

 Templates that need no modification;
 Templates you can internationalize by customizing the formatting to add localization

processing;
 Templates that must be unique for each Locale.

A number of assemblers will not need modification. Generally, Templates that produce small, simple
Snippets, such as title links used in navigation or abstracts used on index pages, do not require
localization. These Snippets consist of a few lines of text from managed content, with no static text or
images, and thus require no special modification for localization.

Templates require internationalization if they include static text or if the formatting differs significantly
for one or more Locales. A Template that includes images may also require internationalization,
depending on the content of the images. If an image includes text or culture-specific content, you
probably need to internationalize the Template that uses that image.

You can offload internationalization of static text in Template to the server by adding translation keys to
the Template markup.

Another approach for static text is to use Dispatch Templates, which are also necessary for
internationalized images. The Dispatch Template evaluates the Locale of the content and processes the
Template accordingly, displaying the correct text or retrieving the correct image.

If the Templates differ significantly for different Locales, such as using different table layouts, you
probably need to develop Locale-specific Templates. If you have a significant amount of conditional
processing, it may also be easier to manage unique Templates for each Locale rather than using excessive
Dispatch Templates.

You can combine both approaches to internationalizing Templates. You may have sets of Locales that can
use common images, for example, but that also use unique static text for specific Locales within the
Group. For example, you may have several Spanish Locales that use the same set of images, but that use
different static text. In that case, you might develop a set of Dispatch Templates for your Spanish Locales
to display the appropriate text.

 Chapter 3 Modeling Internationalization of a Rhythmyx Content Management System 9

Modeling Internationalized Workflows
Internationalizing Workflows involves three steps:

 Defining the Relationship dependency model between original and translation content items;
 Defining the model for the Workflow processes
 Deciding when to spin off translation Versions of content items.

Defining the Content Relationship Model for Translations
When a user creates a translation Version of a Content Item, the translation Version has a Relationship
association with the original item. In many cases, the two items proceed through their respective
Workflow processes, become Public, and are published independent of one another. This association is
referred to as a weak dependency.

In other cases, items from multiple Locales must become Public together. For example, in some
jurisdictions, content must be available in multiple languages; it would be illegal to publish a content item
in one language if the associated translation was not complete. Both items must be ready to enter a Public
State before either can make the Transition. This association is referred to as a strong dependency.

Your circumstances determine the model you choose. As indicated above, in some cases, regulations
dictate a strong dependency model. Business requirements may also dictate a strong dependency model if
your priority is to keep the content on all sites synchronized. A strong dependency model may entail
some delay in publishing the content, however, while translation is completed.

Much of the time you have more flexibility about keeping content synchronized. If it is not important that
content for all Locales stay synchronized, a weak dependency model may be more appropriate. A weak
dependency model may be more appropriate if timely publication of the original content is more important
than synchronization of content for all Locales, such as delivering breaking news.

Relationship dependencies can be defined by content type, so you do not have to use a pure model. For
example, a system using strong dependencies may include “quick edit” States so you can fix minor
mistakes, such as misspellings. A misspelling in an original item is unlikely to affect its translation, so
there’s no reason that the translation item should change States while the original is edited.

Modeling Internationalized Workflow Processes
To internationalize Workflow processes, decide whether you need any Locale-specific Workflows, or
whether a single translation Workflow will suit your needs. In most cases, a single translation Workflow
should be sufficient. You may need Locale-specific Workflows if a Locale has specific translation
requirements that differ from other Locales.

10 Rhythmyx Internationalizing and Localizing Rhythmyx

Workflow Processes in Strong Dependency Models
In systems that use a strong dependency model, you must pay special attention to your Workflow
Processes. A strong dependency model may require that all content enter a Public State together. If you
have not designed your Workflow process and your content Relationships correctly, content can become
trapped in the Workflow, unable to progress to a Public State.

Best Practice when designing Workflow processes for a strong dependency model is to create a “pending”
State prior to the Public State in each Workflow. In this State, all work is effectively done on the Content
Item and it is ready to Transition to Public, but must wait for dependent items to reach the same State
before they can all make the Transition.

Spinning Off Translation Versions of Content Items
In a strong dependency model, you will need to decide at what phase in the Workflow to spin off the
translation Version of the Content Item. Usually, it is best to generate the translation Versions
automatically using the sys_CreateTranslations Workflow Action. This Action creates a Translation
Content Item of the original Content Item in each Locale in which the original Content Item does not
already have a corresponding Translation Content Item.

Best Practice is to spin off the translation Versions as late in the Workflow process as possible, ideally
when the original item enters the “pending” State. At this point, all revision of the original item is
complete, so the translator uses the final version of the original. If you spin off the translation Versions
too early, the text of the original may still be changing and the translation may not account for all edits to
the original item.

 Chapter 3 Modeling Internationalization of a Rhythmyx Content Management System 11

Modeling Publishing
Two delivery models are available for publishing content in Rhythmyx.

 A “language-centric” approach involves creating a file system for each language or modifying
your output database with additional columns or tables to store localized content.

 A “content-centric” approach involves creating a single file system or database schema with
unique pages or rows for each language.

Both approaches are feasible using Rhythmyx.

If you deliver to remote sites, such as mirrors in the Locale’s country, you should use a language-centric
approach rather than a content centric approach. A language-centric approach is also more appropriate if
much of the content of your sites is Locale-specific. For example, if you offer different products in
different Locales, you probably should use a language-centric approach.

A language-centric approach is also more appropriate if you re-translate content frequently, or if your
translators are in-house or otherwise easily accessible. A language-centric approach can be more
expensive, however, since it may require multiple servers and databases.

A language-centric delivery model makes it easier to manage all of the content for a single Locale because
all of the Locale-specific content resides together. You can also define different Publishing rules for
different Locales and administer each Locale separately. Using this model, however, it is difficult to tell
whether the content is in sync across Locales (in other words, whether all of the content on the en-us site
is also on the fr-ca site). Sites may be out of sync if you use scheduled Publishing and the schedules for
the sites are not synchronized.

If you deliver content from a single server, a content-centric approach may be useful particularly if your
content does not differ significantly across Locales. If you translate less frequently (for example, if you
outsource translations or if your Localized content is relatively stable), you might prefer a content-centric
approach. A content-centric approach to content delivery can also be less expensive because it requires
fewer delivery servers and databases.

Using a content-centric approach, it is easier to monitor whether specific content is Published across
Locales because content for all Locales is together. However, you cannot define unique publishing rules
for different Locales and all Locales are administered together.

If you choose a language-centric approach, you will only need to design the additional file trees or
database schemas for your localized sites. You will need to define contexts for each site, as well as global
variables and scheme generators to deliver content into each site.

If you choose a content-centric delivery model into a file system, you will need to decide on a naming
convention for localized content. A common convention incorporates the Locale identifier into the page
name:

index_en-us.htm
index_fr-ca.htm
index_de-de.htm
home_en_us.htm
home_fr-ca.htm
home_de-de.htm

 13

C H A P T E R 4

Implementing Internationalization
This section explains how to implement your internationalization model you developed for Content
Assembly, Workflow, and Publishing. Since you do not need to develop a content model for
internationalization, no additional implementation is required to internationalize content.

This section also discusses support for internationalization on the Rhythmyx server.

14 Rhythmyx Internationalizing and Localizing Rhythmyx

Internationalization Support on the
Rhythmyx Server
Several default Rhythmyx CMS tables have been internationalized. You can use these tables in both
Content Editors and Content Assemblers. Internationalized tables include:

Table Keys
COMPONENTS psx.component.<NAME>@<DISPLAYNAME

CONTENTTYPES psx.contenttype.<CONTENTTYPEID>@<CONTENTTYPENAME>

CONTENTVARIAN
TS

psx.variant.<VARIANTID>@<VARIANTDESCRIPTION>

ROLES psx.role@<ROLENAME>

RXCOMMUNITY psx.community@<NAME>

RXLOCALE psx.locale@<LANGUAGESTRING>

RXLOOKUP psx.keyword.<LOOKUPID>@<LOOKUPDISPLAY>

RXMENUACTION psx.menuitem.<NAME>@<DISPLAYNAME>

RXSITES psx.site.name.<SITEID>@<SITENAME>

psx.site.description.<SITEID>@<SITEDESC>

RXSLOTTYPE psx.slot@<SLOTNAME>

STATES psx.workflow.state@<STATENAME>

TRANSITIONS psx.workflow.transition.<WORKFLOWAPPID>.<TRANSITIONID>@<TRANSITIONLABEL>

WORKFLOWAPPS psx.workflow.workflow.workflow.<WORKFLOWAPPID>@WORKFLOWAPPNAME

 Chapter 4 Implementing Internationalization 15

Translation keys consist of two parts, a UI identifier and a label identifier. The UI identifier specifies
what part of the user interface uses the data. It consists of the following elements

 Prefix (always the Percussion identifier, psx)
 UI Mode (identifies which general portion of the interface uses the data, for example,

workflow, component, or slot)
 UI Context (identifies in detail the portion of the mode that uses the data; this element is

optional)
For example, the UI identifier for Workflow TRANSITIONS table is psx.workflow.transition, while the
UI identifier of the RXLOOKUP table is psx.keyword.

The label identifier specifies the label to use. Some tables only require the single column storing the label,
but other may require an identifier column as well. In some cases, two identifiers are required. For
example, the key for a Workflow Transition requires the WORKFLOWAPPID column as well as the
TRANSITIONID column, while the key for a Role only requires the ROLENAME column.

You can use the Rhythmyx Language Tool to create Localized translations of display data from these
tables.

The RXLOOKUP table is the most commonly used table in this list. It stores lookup data for droplists and
similar controls used in Content Editors.

Several Rhythmyx resources have been internationalized to display localized data for these tables. These
resources include:

Application Name Resources
sys_cmpUserCommunity usercommunity

sys_caCommunityViews All resources

sys_caContentSearch All query resources

sys_caSites casites_gen and casites_comm

sys_ceDependency Depend, children and parents

sys_ceInlineSearch resultpage, contenttypelookup

sys_ceSupport contentstatus, variantlist, Variantlookup, lookup,
variantlist

sys_cmpCaMenuNewContent All resources

sys_cmpMenuViews All resources

sys_i18nSupport All resources

 sys_commSupport usercommunities, communityworkflows(2),
communitynamelookup

sys_ca All resources

sys_psxRelationshipSupport workflowlookup, communityworkflowlookup

sys_rcSupport relatedcontent, contentslotvariantlist,
itemslotvariantlist, contenttypelookup,
slotctypevariantlist, variantlist(2),
variantlistwithslots(2), communitycontentlookup

16 Rhythmyx Internationalizing and Localizing Rhythmyx

Application Name Resources
sys_relatedSearch resultpage, relatedsearch

sys_searchSupport contentlookup, communitycontentlookup,
stateslookup

sys_uiSupport ActionList, ActionListChildren

sys_Variants variants
If your application links to these resources, it will already include localized data. For example, droplists
that refer to the RXLOOKUP table usually use the Lookup resource in the application rx_ceSupport. This
resource is already internationalized. If your Content Editor derives its data from this resource, it will
present the user with localized data.

However, you will probably have to build applications that do not include these resources, particularly
Content Assemblers, which are specific to each implementation. To retrieve localized data from
internationalized tables for these applications, Rhythmyx includes two UDFs:

 sys_LocalizedTextLookup; this UDF requires you to specify how to derive the Locale used to
lookup localized data. For example, you may use the Locale of the Content Item. Use this
UDF when you cannot derive the Locale from the User Context, such as on Content
Assemblers.

 sys_LocalizedTextLookupUser; this UDF derives the Locale from the User Context when
looking up localized data. Use this UDF only when you can derive the Locale from the User
Context, such as on Content Editors.

To use these UDF’s map them to the DTD element associated with the localized data. The following
graphic shows an example:

Figure 1: Mapping an Internationalization UDF

Both UDFs require you to specify the translation keys you want to use for the data. Key1 must specify the
UI identifier while the remaining keys specify the table columns. In addition, the
sys_LocalizedTextLookup UDF has a LanguageString parameter that specifies the location of the Locale
for the translation keyword. When using the UDF on an assembler, for example, this parameter would
probably be mapped to the Locale of the item.

 Chapter 4 Implementing Internationalization 17

Localizing the EditLive Text Editor
You can localize the interface of the sys_EditLive inline text editor control. For details see the topic
"Adding Custom Menu and Toolbar Actions" in Rhythmyx's Technical Reference Manual or the Ephox
EditLive! for Java Developer's Guide on the developer section of the Ephox Web Site
(http://www.ephox.com).

http://www.ephox.com/

18 Rhythmyx Internationalizing and Localizing Rhythmyx

Implementing Internationalized Assembly
In addition to implementing Templates for internationalization, you may need to modify dates based on
Locale. Publishing some languages may also require modifying the output character set. Finally, you
may want to automate the creation of links to localized versions of content.

Implementing Internationalization of Templates
When developing Templates for internationalization, be sure to include a binding on the Locale. The
Locale is stored in the property sys_lang, so your binding will resemble the following screenshot:

Figure 2: Example binding for Locale

Implementing Localized Templates
A localized Template is a Template that includes only the static text and image references specific to one
locale. You should include some indication of the Locale for the Template in the Template name.

If all of the Templates in a localized Site are Localized Templates, you can call all of these Templates
directly. If you use some internationalized Templates, however, you may have to use Dispatch Templates
to choose the correct Localized Template for a Locale.

 Chapter 4 Implementing Internationalization 19

Implementing Internationalized Templates
An internationalized Template is a single Template that produces different static text and images for
different Locales.

To internationalize images, you must use Dispatch Templates to select the correct image based on the
Locale.

Two options are available for internationalizing static text:

 Use Dispatch Templates to choose the correct text to display for the output Locale.
 Use the Translation Bundle on the Rhythmyx Server.

To use the Rhythmyx Translation Bundle:

a) Define a set of Translation Keys for localized text and add them to the Rhythmyx TMX
file.

b) Create a translation XML.

c) Translate the keys for the localized text (see page 32).

d) Upload the translated XML file (see "Merging TMX Files with the Master TMX
Document" on page 33).

Preparing Templates for Localization
You do not have to modify all Templates for Localization. You only have to modify Templates files if
they include the following elements:

 Static text
 Alt text
 Locale-specific images or cascading stylesheets.

To modify a Template for translation:

1 Define Translation Keys for each static text or alt text string. Use the following conventions:

 Static text: assemblyPlugin.templateName@textToBeTranslated

where

o assemblyPlugin is the name of the Assembly Plug (Velocity by default);

o templateName is the name of the Template where the key is used; and

o textToBeTranslated is the string to be translated into other Locales.

For example, if you wanted define a key for the text Search in the Template
rffPgEIGeneric, you would define the key velocity.rffPgIEGeneric@search

 Alt text: assemblyPlugin.templateName.alt@altText

where

20 Rhythmyx Internationalizing and Localizing Rhythmyx

o assemblyPlugin is the name of the Assembly Plug (Velocity by default);

o templateName is the name of the Template where the key is used; and

o altText is the alt text string to be translated into other Locales.

For example, if you wanted define a key for the altText Search Icon Search in the
Template rffPgEIGeneric, you would define the key
velocity.rffPgIEGeneric.alt@SearchIcon.

2 Add the Translation Keys to the Rhythmyx server ResourceBundle.tmx file
(<Rhythmyxroot>/rxconfig/I18N.ResourceBundle.tmx). For details about the correct
formulation of entries in the TMX file, see www.lisa.org/tmx (http://www.lisa.org/tmx). In
the <prop type="sectionname"> element for each translation key, specify XSL
Stylesheet. (<prop type="sectionname">XSL Stylesheet>). (This option is
used by the Rhythmyx Language Tool to retrieve keys used in XSL Stylesheets and Velocity
Templates.)

3 If you develop Locale-specific images, place them in Locale-specific subdirectories of the
rx_resources/images directory. For example:

../rx_resources/images/fr-ca

../rx_resources/images/de-de

../rx_resources/images/ja-jp

Use Dispatch Templates to choose the correct image subdirectory for each Locale.

Implementing Internationalized Numbers and Date
Formats
Formats for numbers and dates differ by Locale, and you often need to convert them from the default
format in which they are stored in the database to the format appropriate to the Locale.

Numbers within content item text are part of the text string, which Rhythmyx does not translate
automatically. The translator of the item must translate these numbers and dates.

To modify the format of dates in system fields, use the Velocity Date Tools.

http://www.lisa.org/tmx

 Chapter 4 Implementing Internationalization 21

Changing Output Character Sets
The output character set defines the character set used in the pages Rhythmyx generates. The default
output character set of Rhythmyx is UTF-8, but a variety of additional character sets are available.

The output character set is defined for each Template in the Character set field on the General tab of the
Template editor. If different Locales require different output character sets, you will have to use different
Templates for each Locale or set of Locales that use a particular character set. For example, suppose you
were outputting to the following Locales using the specified character sets:

 sa-ar: iso-8859-6)
 en-us: UTF-8
 fr-ca: UTF-8
 jp-ja: EUC-JP
 kr-ko: EUC-KR

In this case, you could use the same internationalized Template for the en-us and fr-ca Locales, but would
have to use unique localized Templates for the sa-ar, jp-ja, and kr-ko Locales.

Creating Automatic Links to Other Localized Versions of
Content
You may want content to cross-link to other localized versions (for example, a Page in English would
include cross-links to versions of the same Page in French, German, and Spanish). To create automatic
links from one piece to content to other localized versions of the content, create a new Slot using the
sys_TranslationContentFinder. This Content Finder populates the Slot with a list of Content Items
associated in a Translation Relationship with the Content Item being Assembled.

When adding the sys_TranslationContentFinder to a Slot, you must specify the Template that will be used
to format the links to the associated Translation Content Items in the template parameter. You can also
specify a maximum number of Content Items to include in the Slot in the max_results parameter, and
define the order in which the Content Items will be listed in the order_by parameter.

Add the Slot to the Page where you want the links to be included.

22 Rhythmyx Internationalizing and Localizing Rhythmyx

Localizing the Business User Interface
Implementing internationalized Workflow processes does not require any special work. While you may
need to develop special processes for specific Locales, those processes do not need to change to
accommodate different Locales.

The Business User interface, however, does require translation, or localization. To localize the interface,
add a new language to Rhythmyx. Because Rhythmyx uses the Java definition of language by Locale, you
can add multiple variants of each language to Rhythmyx. For example, you can add French as spoken and
used in France and French as spoken and used in Canada.

When adding a new language, you translate text inherent in Rhythmyx including:

 Text in Rhythmyx CMS tables;
 Labels in Content Explorer (other than the //Sites and //Folders roots, which cannot be

translated);
 Displayable references in Templates;
 Displayable references in extension and system resources (System resources produce labels

and links within the Rhythmyx interface [for example, the Insert, Edit, and View Dependents
labels in the Action Menu], as well as error codes for extensions provided by Percussion
Software that have been localized.)

Rhythmyx uses Translation Memory Exchange (TMX), an XML–standard method of defining translatable
data. For details about TMX, see http://www.lisa.org/tmx/tmx.htm. The Rhythmyx server installation
includes a command-line tool, the Rhythmyx Language Tool, that you can use to create TMX files for
translation, and upload translated TMX files to Rhythmyx. (Note: Although the Rhythmyx Workbench
includes functionality that allows you to maintain Locales, you can also use the Rhythmyx Language Tool
to maintain Locales; For details, see Appendix I, Using the Rhythmyx Language Tool to Maintain
Locales.)

While CMS table text and Content Editor labels are available automatically, you must modify Templates
that contain any of the following:

 Static text
 Alternative text
 Locale-specific image references or cascading stylesheets

You may also want to localize cascading stylesheets.

Any JavaScript files included in Templates must also be localized if they include alert or prompt
messages.

You may also want to use Locale-specific images in your content editor, especially if the images include
any text.

Note that when you add a new Locale to Rhythmyx, the Rhythmyx Language Tool only copies system
resources (Locale-specific resources shipped as part of Rhythmyx) to the new Locale. Any resources
specific to an implementation, such as graphics or JavaScript files, must be copied to Locale-specific
folders manually.

You must define the Locales in your system and translate the labels of the interface elements in the
Business User interface.

 Chapter 4 Implementing Internationalization 23

Maintaining Locales
The default Locale for Rhythmyx is the US English (en-us) Locale. You must create any other Locale you
want to use in the system.

24 Rhythmyx Internationalizing and Localizing Rhythmyx

New Locale Wizard
The New Locale wizard allows you to create a new Locale in the Locale folder of the Localization node in
Content Design view.

To access the New Locale wizard:

 From the Menu bar choose File > New > Other. In the Select a wizard dialog, choose Locale.
 In Content Design view, right-click the Locale category under the Localization folder and

choose New > Locale.

Figure 3: New Locale Wizard

Field Definitions
Language - Drop list of languages.

Country - Drop list of countries and regions that you can associate with the language.

Label - Label for Locale that Rhythmyx displays to users.

Description - Optional. Description of Locale.

Enabled - Whether or not Locale is available to users. Default is unchecked (disabled).

 Chapter 4 Implementing Internationalization 25

Locale Editor
The Locale editor allows you to change Locale properties.

To access the Locale editor:

 After finishing the New Locale wizard (on page 24), click [Finish].
 In any view that displays Locales, right-click a Locale and choose Open.
 In any view that displays Locales, double-click a Locale.

Figure 4: Locale Editor

Field Definitions
Language - Read-only. Locale language.

Country - Read-only. Locale country or region.

Label - Label for Locale displayed in Content Explorer.

26 Rhythmyx Internationalizing and Localizing Rhythmyx

Description - Optional. Description of Locale.

Enabled - Whether or not Locale is available to users.

Creating a Locale
To create a Locale, complete the Locale wizard.

For a graphic of the wizard and definitions of the fields discussed below, see New Locale Wizard (on page
24).

To create a Locale:

1 In Content Design view, under the Localization node, right-click on the Locale folder and
choose New > Locale.

The Locale wizard (see "New Locale Wizard" on page 24) opens.

2 In the Language drop list, choose a language.

3 In the Country drop list, choose a country or region.

4 In Label, enter the name that Rhythmyx will display for the Locale in Content Explorer.

5 In Description, optionally enter a description for the Locale.

6 By default, the Locale is disabled. If you want to make it available to users, check Enabled.

7 Click [Finish].

The Locale wizard closes and the Locale editor (on page 25) opens. The Locale appears under
the Locales category of the Localization folder in Content Design View.

Now you can:

 Make changes to the Locale properties (see "Editing a Locale" on page 26) in the
Locale editor.

 Localize components of your Rhythmyx system. See the document Internationalizing
and Localizing Rhythmyx for instructions.

Editing a Locale
When you edit a Locale, you can modify all of the properties except the country and region.

For a graphic of the Locale editor and definitions of the fields discussed below, see Locale Editor (on
page 25).

To edit a Locale:

1 In any view where the Locale appears, right-click on the Locale and choose Open.

OR

Double-click the Locale.

The Locale editor (on page 25) opens with data filled in for the Locale.

2 Change the Label or Description or check/uncheck Enabled.

3 Save and close the Locale editor.

 Chapter 4 Implementing Internationalization 27

Deleting a Locale
To delete a Locale:

1 In any view that displays the Locale, right-click the Locale and choose Delete.

The Locale is deleted.

Preparing XSL Files for Localization
You do not have to modify all XSL files for localization. You only have to modify XSL files if they
include the following elements:

 Static text
 Alt text
 Locale-specific images or cascading stylesheets.

To modify an XSL file for translation:

1 Add the internationalization namespace to the XSL file:
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:psxi18n="urn:www.percussion.com/i18n" exclude-result-
prefixes="psxi18n">

2 Import the sys_I18nUtils.xsl file:
<xsl:import href="file:sys_resources/stylesheets/sys_I18nUtils.xsl"/>

3 Add a global variable called ‘lang’ just after all the imports.
<xsl:variable name="lang" select="//@xml:lang"/>

 If you import the XSL file into any other XSL files, the main XSL file in the set (the XSL
into which the all others are imported) must have the variable definition. The select attribute
in the variable definition assumes that the root element of the XML document has the
xml:lang attribute. Note that the xml:lang attribute is reserved for the user’s Locale
string. If you want to add a different Locale (for example, the Locale of the item), you must
use a different name.

4 To localize static text, replace the text you want to localize with a template call. The template
call should have two parts: the first is a unique key for the text and the other is a text string.
The recommended format is:

applicationname.xslfilename@texttobetranslated

where

applicationname is the name of the Rhythmyx application;

xslfilename is the name of the XSL file; and

texttobetranslated is the actual text that will be localized.

For example, suppose you wanted to localize the following:
<tr>
 <td class=”datacell1font>Search Results</td>
</tr>

28 Rhythmyx Internationalizing and Localizing Rhythmyx

The modified code would look like this:
<tr>
 <td class=”datacell1font>
 <xsl:call-template name="getLocaleString">
 <xsl:with-param name="key"
select="'psx.applicationname.xslfilename@Search Results'"/>
 <xsl:with-param name="lang" select="$lang"/>
 </xsl:call-template>
</td>
</tr>

5 Use the same technique to localize alt text that you use to localize static text. The
recommended format is:

applicationname.xslfilename.alt@AltText

Where

applicationname is the name of the Rhythmyx application;

xslfilename is the name of the XSL file; and

alt inidicates that the template is for alt text; and

AltText is the text that will be localized.

For example:
<img border="0" height="20" width="20"
src="../sys_resources/images/cal.gif">
<xsl:attribute name="alt">
<xsl:call-template name="getLocaleString">
<xsl:with-param name="key"
select="'psx.sys_cmpCaSearchBox.searchbox.alt@Calendar Pop-up'"/>
<xsl:with-param name="lang" select="$lang"/>
</xsl:call-template>
</xsl:attribute>

6 If you develop Locale-specific images, place them in Locale-specific subdirectories of the
rx_resources/images directory. For example:

../rx_resources/images/fr-ca

../rx_resources/images/de-de

../rx_resources/images/ja-jp

Use the following code to define the src attribute of localized images:
src="concat(‘../rx_resources/images/’,$lang,’/imagename.gif)"

 For example:
<img border="0" height="20" width="20"
src="concat(‘../rx_resources/images/’,$lang,’/help_icon.gif)"/>

7 To make all of the keys available to the Rhythmyx Language Tool, list them all as children of
the psxi18n:lookupkeys element at the end of the XSL file. For example:

<psxi18n:lookupkeys>
<key name="psx.applicationname.xslfilename@Search Results">Search
Results text for Search Box.</key>
<key name="sys_cmpCaSearchBox.searchbox.alt@Calendar Pop-up">Alt text
for calendar pop-up.</key>
</psxi18n:lookupkeys>

 Chapter 4 Implementing Internationalization 29

The value of the name attribute is the translation keyword recovered by the Rhythmyx
Language Tool, while the value of each key is the note to the translators for the translation
unit.

8 When processing, the XSL file needs to know the user’s Locale. The Locale is user’s session
object sys_lang variable. In the mapper of the application associated with the XSL, add
xml:lang as an attribute of the root element of the result document.

 PSXUserContext/User/SessionObject/sys_lang PSXXmlField/RootElement/@xml:lang

Add the same mapping to any application that imports this XSL.

Localizing JavaScript Files
Localize JavaScript files if they include alert messages or prompts.

To localize JavaScript files, replace the text of alert messages and prompts with a Localized Message
function call and a keyword:

alert(LocalizedMessage “alert_message_keyword”));
Localized error messages are stored in the
rx_resources/js/Locale/globalErrorMessages.js JavaScript file. Each Locale has
a unique version of this JavaScript file located in a Locale-specific subdirectory of the
rx_resources/js directory. For example, if your system include US English, German, and Canadian
French Locales, you would have the following globalErrorMessages.js files:

rx_resources/js/en-us/globalErrorMessages.js
rx_resources/js/de-de/globalErrorMessages.js
rx_resources/js/fr-ca/globalErrorMessages.js

Keyword entries are added to the Psx_MessageMap_Local variable. The format for keyword entries in
these files is:

alert_message_keyword: “Locale specific translation of the keyword.”,

NOTE: All entries MUST end with a comma.

For example, if you had the following JavaScript function:
function search_submit()
{
 if(document.formx.itemx.value==””)
{
 alert(“Search name is a required field”);
return false;
}
document.formx.submit();
}

You modify the alert message:
function search_submit()
{
 if(document.formx.itemx.value==””)
{
 alert(LocalizedMessage(“search_name_required”));
return false;
}

30 Rhythmyx Internationalizing and Localizing Rhythmyx

document.formx.submit();
}

Next, add an entry for the keyword to the PsxMessageMap_Locale variable of the
rx_resources/js/en-us/globalErrorMessages.js JavaScript file.

var PsxMessageMap_Locale ={
search_name_required: " Search name is a required field.",
save_search_prompt: "Please enter a name for this search.\nNote: search
will be overwritten if name already exists.",
………………………………..
………………………………..
};

Add the keyword entry to the globalErrorMessages.js JavaScript file for each Locale. Assuming
your implementation included the three Locales specified above, you would also have to add an entry to
the rx_resources/js/de-de/globalErrorMessages.js and rx_resources/js/fr-
ca/globalErrorMessages.js JavaScript files.

Any XSL files that use localized JavaScript files must include both the system (sys_resources) and
local (rx_resources) globalErrorMessages.js JavaScript files and the Global Variable lang
mapped to the xml:lang attribute of the root element of the XML. See “Preparing XSL Files for
Localization (see "Preparing Templates for Localization" on page 19, on page 27)”, Step 8 for instructions
about mapping the lang Global Variable. To add the globalErrorMessages.js JavaScript files,
include the following script calls in the XSL file:

<script language="javascript"
src="../sys_resources/js/globalErrorMessages.js">;</script>
<script language="javascript"
src="{concat('../rx_resources/js/',$lang,'/globalErrorMessages.js')}">;<
/script>

Localizing JSPs
To localize a JSP for Rhythmyx:

1 Add a tag library reference to the Rhythmyx JSP tag library:
<%@ taglib url="http://rhythmyx.percussion.com/components"
prefix="rxnamespace"%>

Where rxnamespace is the namespace that will be used to refer to Rhythmyx JSP EL
functions in EL function references for localized content derived from Rhythmyx.

2 Mark up each instance of localized content derived from Rhythmyx using the following code:
${rxnamespace:i18ntext('jspname@keyname',locale}

Where:

 rxnamespace is the namespace you specified in the rag library reference to refer to
the Rhythmyx SAP EL function library.

 i18ntext is Rhythmyx i18ntext JSP EL function (this is currently the only
supported function).

 jspname is the name for the collection of keys. You can name keys by JSP, by
project, or according to some other convention.

 keyname is the name of the specific key to be localized.

 Chapter 4 Implementing Internationalization 31

 locale specifies the locale into which the text should be localized.

The locale parameter can be specified in two different ways:

 In most cases, the request will include the HTTP parameter sys_lang; in that case, you
can specify param.sys_lang: for example

${rxnamespace:i18ntext('jspname@keyname',param.sys_lang)

 If the request does not include the HTTP parameter sys_lang, you can bind it to a
variable elsewhere. For example, in the Rhythmyx login page (rxlogin.jsp), the
system locale is bound to the variable locale:

<%
 String locale = PSI18nUtils.getSystemLanguage();
 pageContext.setAttribute("locale", locale);
%>

This variable is used later:
<title>${rxcomp:i18ntext('jsp_login@Rhythmyx
Login',locale)}</title>

Using Locale-specific Images
Images may need to be localized, particularly if they include text. Rhythmyx does not include tools for
localizing images themselves. Use appropriate graphic tools to develop Locale-specific images. The
images for each Locale should be stored in a Locale-specific subdirectory of the
rx_resources/images directory. For example, if your implementation includes US English,
Canadian French, and Japanese, you would have the following subdirectories:

rx_resources/images/en-us
rx_resources/images/fr-ca
rx_resources/images/ja-jp

When coding XSL files, use the following code to define the src attribute of localized images:
 src="concat(‘../rx_resources/images/’,$lang,’/imagename.gif)"

For example:
<img border="0" height="20" width="20"
src="concat(‘../rx_resources/images/’,$lang,’/help_icon.gif)"/>

Rhythmyx Language Tool
The Rhythmyx Language Tool is a command-line interface that allows you to:

 create TMX files for translation; and
 merge translated TMX files with the master internal TMX file.

The Rhythmyx Language Tool is installed with the Rhythmyx server, and is stored in the rxlt directory
of the Rhythmyx server directory.

Run the language tool from a command line. To run the Rhythmyx Language Tool, change to the rxlt
directory, and run the rxlt executable or shell script.

When the Rhythmyx Language Tool starts, it will display the available actions:

1 Generate TMX File

32 Rhythmyx Internationalizing and Localizing Rhythmyx

2 Merge Translated TMX File with server TMS File

3 Exit

Generating TMX Files for Translation
Before generating the TMX file, you should prepare all XSL file (see "Preparing Templates for
Localization" on page 19, "Preparing XSL Files for Localization" on page 27)s and JavaScript (see
"Localizing JavaScript Files" on page 29) files for localization, and localize all images (see "Using
Locale-specific Images" on page 31).

To generate a TMX file for translation:

1 Start the Rhythmyx Language Tool.

2 Enter 1 (Generate TMX Resources).

3 Rhythmyx displays a list of interface sections to translate:

1. CMS Tables

2. XSL Stylesheets

3. Content Editors

4. Extension Resources

5. JSP Files

 All

4 Enter the sections you want to include. You can enter more than one section. Separate
sections with commas. NOTE: If you enter “A”, the Rhythmyx Language Tool ignores any
additional characters you enter.

5 Press the <Enter> key.

6 Specify the path and name of the output file. The default file and location is
rxlt/tobetranslated.tmx.

7 The Rhythmyx Language Tool asks you whether you want to include only missing keywords
from the master resource in the generated TMX file. Enter “yes” (default) to include only
missing keywords. Enter “no” to include all keywords in the TMX file. Usually, “yes” is the
correct option.

Rhythmyx generates the TMX file in the location you specified.

Translating TMX Files
Rhythmyx TMX files use only a subset of the TMX DTD.

Each TMX file starts with a header that is generated by the Rhythmyx Language Tool. Do not modify the
data in the header. For example, if you attempt to add a language by adding it to the header of a TMX file
instead of registering it through RLT, Rhythmyx will not recognize the new language.

The header includes one <prop> element for every Locale currently supported in the CMS
implementation.

<prop type="supportedlanguage">de-de</prop>
<prop type="supportedlanguage">en-us</prop>

 Chapter 4 Implementing Internationalization 33

<prop type="supportedlanguage">fr-ca</prop>
<prop type="supportedlanguage">it-it</prop>
<prop type="supportedlanguage">ja-jp</prop>

The Rhythmyx Language Tool generates translation keywords automatically. Each translation keyword is
defined by a Translation Unit (<tu>) element. The Translation Unit Identifier (tuid) attribute specifies
the translation keyword.

<tu tuid="psx.ce.action@Check-out">
Each Translation Unit element must include one <prop> child. (NOTE: The TMX DTD allows multiple
<prop> children, but Rhythmyx permits only one.) The <prop> child of the <tu> element specifies
the section name, which defines the CMS area in which the keyword is used.

Each <tu> element may include one <note> child. This element provides information to all translators
about translating the keyword. (NOTE: The TMX DTD allows multiple <note> children, but
Rhythmyx permits only one.)

Each <tu> element has a Translation Unit Variant (<tuv>) child for each Locale defined in the header.
Each <tuv> element has a <seg> child. Enter the translation for the keyword for the Locale in the
<seg> element. The <tuv> element can also include a <note> child to provide information about
translating the keyword to a specific Locale. No XML comments are allowed in TMX documents,
however. XML comments in a TMX document will not be uploaded with the document.

Merging TMX Files with the Master TMX Document
To merge a translated TMX file with the Master TMX document:

1 Start the Rhythmyx Language Tool.

2 Enter 2 (Merge translated TMX file with master).

3 Specify the path and name of the TMX file you want to merge with the Master TMX
document. For example, rxlt/tobetranslated.tmx.

4 Press the <Enter> key.

Updating TMX Files
You can update the translations in the server TMX file. For example, if you change terminology, you
would update the TMX file to use the new terminology. You can even change the terms in the default
Locale of the server TMX file. For example, you may want to use “Checkout” instead of the default
“Check-out”. You can modify the translation of the keyword to the new value.

To update a TMX File, generate a TMX file for the interface elements you want to retranslate, retranslate
the file, and merge the retranslated file with the server TMX file.

34 Rhythmyx Internationalizing and Localizing Rhythmyx

Removing Stale Keywords
Keywords maybe become stale or out of date if you no longer use them. For example, if you delete a
Workflow, the Transitions no longer exist and the Transition labels are no longer useful. You can leave
these keywords in your server TMX file without harm to your system, but the server TMX file will be
unnecessarily large. Therefore, you may want to remove these stale keywords.

The Rhythmyx Language Tool does not provide an option for removing stale keywords, but you can use
the following procedure:

1 Run the Rhythmyx Language Tool and generate a TMX file. Choose “A” to include all
interface sections in the file.

2 When the RLT asks whether you want to include only missing keywords, enter “no”.

3 Generate the TMX file and save it to locally to the Rhythmyx Language Tool as
ResourceBundle.tmx.

4 Create a backup copy of the server TMX file
(../rxconfig/I18n/ResourceBundle.tmx) and store it in a safe location.

5 Replace the server copy of ResourceBundle.tmx with the new copy saved in the Rhythmyx
Language Tool directory.

 Chapter 4 Implementing Internationalization 35

Defining Translation Properties
By default, when you create a new Translation Content Item, Rhythmyx adds it to the same Workflow and
Community as its owner. To specify a different Community and Workflow, you must define a
configuration that specifies a different Workflow and Community for each new Content Item of a specific
Content Type in a specific Locale. Use the Translation Settings dialog in the Rhythmyx Workbench.

Use the Translation Settings editor (see "Translation Setting Editor" on page 36) to enter and change
translation settings. With the Translation Settings editor you can

 Create a new translation setting (see "Creating Translation Settings" on page 37).
 Modify a translation setting (see "Modifying Translation Settings" on page 37).
 Remove a translation setting (see "Removing a Translation Setting" on page 38).

NOTE: If you want to allow users to specify the Workflow and Community when creating a Translation
Content Item, you must create a new Workflow Action that provides an alternate interface where the user
can specify these values rather than using the default interface.

36 Rhythmyx Internationalizing and Localizing Rhythmyx

Translation Setting Editor
The Translation Setting editor allows you to add and maintain translation settings.

To access the Translation Setting editor:

 In Content Design view, under the Localization folder, right-click Translation Settings and
choose Open.

Figure 5: Translation Settings Editor

Field Definitions
Translation settings - Table of translation settings.

 Chapter 4 Implementing Internationalization 37

Source Content Type - Content Type for this translation setting.

Target Locale - Locale for this translation setting.

Target Community - Community to assign to the Content Type in the specified Locale.

Target Workflow - Workflow to assign to the Content Type in the specified Locale.

Creating Translation Settings
To create translation settings, enter information into the Translation Setting editor's Translation settings
table.

For a graphic of the editor and definitions of the fields discussed below, see the Translation Settings
editor (see "Translation Setting Editor" on page 36).

To create translation settings:

1 In Content Design view, under the Localization node, right-click Translation Settings and
choose Open.

The Translation Settings editor (see "Translation Setting Editor" on page 36) opens.

2 In the first available row:

a) Click the drop list in the Source Content Type cell and choose the Content Type for the
setting.

b) Click the drop list in the Target Locale cell and choose the Locale for the setting.

c) Click the drop list in the Target Community cell and choose the Community for the setting.

d) Click the drop list in the Target Workflow cell and choose the Workflow for the setting.

3 Repeat step 2 to create additional auto translation settings.

4 Save and close the editor.

Modifying Translation Settings
To modify a translation setting, in the Translation settings table, change any of values in the row for the
setting.

For a graphic of the Translation Setting editor and definitions of the fields discussed below, see
Translation Setting editor (on page 36).

To edit a Translation Setting:

1 In Content Design view, under the Localization node, right-click on Translation Settings and
choose Open.

The Translation Setting editor opens. The Translation settings table displays any existing
translation settings.

2 To change a setting, choose a different value for Source Content Type, Target Locale, Target
Community, or Target Workflow.

3 Save and close the Translation Setting editor.

38 Rhythmyx Internationalizing and Localizing Rhythmyx

Removing a Translation Setting
To remove a translation setting:

1 In Content Design view, under the Localization folder, right-click Translation Setting and
choose Open.

The Translation Settings editor opens.

2 In the Translation settings table, click on the row of the translation setting that you want to
remove.

3 Click .

4 The row is removed from the table.

5 Save and close the Translation Setting editor.

 Chapter 4 Implementing Internationalization 39

Implementing Automated Translation
When working with a Strong Dependency model, you usually want to generate Translation Content Items
automatically at a specific point in the Workflow. Before implementing Automated Translation, the
following Rhythmyx elements must be in place:

 Translation Content Types
 Locales to be translated (must also be enabled)
 Workflows
 Communities (at least Roles and Content Types must be associated with each Community to

make it eligible to use in Auto Translation.
 Translation Configurations

To implement Auto Translation, Add the sys_createTranslations Workflow Action to the Workflow
Transitions where you want to generate the Translation Content Items.

40 Rhythmyx Internationalizing and Localizing Rhythmyx

Example Auto Translation Implementation
To demonstrate implementation of Auto Translation, let us begin with a system with in which Canadian
French (fr-ca) and Mexican Spanish (es-mx) locales have been enabled. The Translations will use the
Generic Content Type.

The system includes a Central American Marketing Community and a North American Marketing
Community. The Central American Marketing Community includes a Spanish Translation Workflow and
the North American Marketing Community includes a French Translation Workflow:

Figure 6: Community Visibility view

 Chapter 4 Implementing Internationalization 41

Example Auto Translation Configurations
When generating Generic Content Items in the Mexican Spanish (es-mx) Locale, we want the Content
Items to go into the Central American Marketing Community and into the Spanish Translation Workflow.
When generating Generic Content Items in the Canadian French (fr-ca) Locale, we want the Content Items
to go into the North American Marketing Community and the into the French Translation Workflow:

Figure 7: Automated Translation Configurations

42 Rhythmyx Internationalizing and Localizing Rhythmyx

Example Transition for Auto Translation
Best practice when generating Translation Content Items automatically is to spin off the Translation
Content Item as late in the Workflow as possible, so most of the work on the original is complete.
Therefore, we will add the sys_createTranslations Workflow Action to the Approve Transition from the
QA State to the Pending State in the Standard Workflow:

Figure 8: Workflow Transition Registration screen

 Chapter 4 Implementing Internationalization 43

Example Auto Translation Content Item
With the implementation complete, let us take a Content Item through the Workflow. We begin with a
sample Content Item:

Figure 9: Example Content Item

44 Rhythmyx Internationalizing and Localizing Rhythmyx

When this Content Item Transitions from the QA State to the Public State, two Translation Content Items
are generated automatically:

Figure 10: Automatically generated Translation Content Item

Configuring the sys_createTranslations Workflow Action
By default, the sys_createTranslations Workflow Action creates a new Content Item of the same Content
Type as the Owner in each enabled Locale in the system, with a Translation - Mandatory Relationship
between the Owner and each Dependent.

You can change the configuration of the Action to create a different Relationship or to skip certain
Locales. These properties are controlled by the sys_createTranslation.properties file
(<Rhythmyxroot>\rxconfig\I18N\sys_createTranslations.properties).

To change the Relationship between the Owner and the Translation Dependent, change the value of the
sys_relationshiptype property to the name of the Relationship you want to use instead of Translation -
Mandatory.

To skip automatic creation of Translation Content Items in a specific Locale, to the sys_excludelocales
property. Use commas or semicolons to separate values.

 Chapter 4 Implementing Internationalization 45

Implementing Internationalized Publishing
Each internationalization model of Publishing requires a minor modification to implementation.

Implementing Language-centric Publishing Models
To implement a language-centric publishing model, you will need to create a Site for each Locale, with
associated Locale-specific Editions and Content Lists.

The Content List application query in this model includes a test for the Locale string of the Locale for
which the Content List is created:

CONTENTSTATUS.LOCALE = ‘de-de’
The registrations of the Site, Editions, and Content Lists do not require any special features to implement
this model.

Implementing Content-centric Publishing Models
To implement a content-centric publishing model, you only need to define the Location Schemes for the
Contexts to include the Locale in the path or the name of each output. For example, the graphic below
shows the registration of a Location Scheme that would produce the following path:

../articles/Locale/art_contentid.htm

Figure 11: Content-centric Scheme Generator Registration

For example,
../articles/en-us/art_1345.htm

46 Rhythmyx Internationalizing and Localizing Rhythmyx

Full-text Search in Globalized Environments
The Convera Full-text Search Engine shipped with Rhythmyx includes only the search libraries for the
default Locale, en-us. If your implementation includes other Locales, the Full-text Search engine requires
additional search libraries for those Locales to index and return results for those Locales.

If your search engine does not include the search libraries required for a specific Locale, the first time you
add a Content Item to that Locale, Rhythmyx will return and error similar to the following (which assumes
the additional Locale fr-ca):

fr-ca not supported, using default of en-us
Rhythmyx returns this error in the server window, and in the server log.

Additional search libraries are available from Percussion Software. Contact your Percussion Software
Sales Representative for details about obtaining these additional libraries.

If a user enters text in an unsupported Locale, the full-text search engine indexes it in the default Locale,
en-us. Thus, if a user enters French text that include the word chat (cat), for example, this word would be
expanded according to the English meaning of the string, resulting in matches such as "talk" or
"converse".

 47

Index
C
Changing Output Character Sets • 21
Character sets • 5
Configuring the sys_createTranslations

Workflow Action • 44
Content Engine • 7, 13
Content Relationships • 9
Content-centric Publishing • 11, 45
Creating a Locale • 26
Creating Automatic Links to Other Localized

Versions of Content • 21
Creating Translation Settings • 35, 37

D
Database character set • 5
Defining the Content Relationship Model for

Translations • 9
Defining Translation Properties • 35
Deleting a Locale • 27
Determining System Requirements • 5

E
Editing a Locale • 26
Example Auto Translation Configurations • 41
Example Auto Translation Content Item • 43
Example Auto Translation Implementation • 40
Example Transition for Auto Translation • 42

F
Full-text Search in Globalized Environments •

46

G
Generating TMX Files for Translation • 32

I
Images • 31
Implementing Automated Translation • 39
Implementing Content-centric Publishing

Models • 45
Implementing Internationalization • 13

Implementing Internationalization of Templates
• 18

Implementing Internationalized Assembly • 18
Implementing Internationalized Numbers and

Date Formats • 20
Implementing Internationalized Publishing • 45
Implementing Internationalized Templates • 19
Implementing Language-centric Publishing

Models • 45
Implementing Localized Templates • 18
Internationalization Support on the Rhythmyx

Server • 14
Introduction to Internationalization and

Localization in Rhythmyx • 3

J
JavaScript • 29
JSP • 30, 32

L
Language-centric Publishing • 11, 45
Locale Editor • 25, 26
Localizing JavaScript Files • 29, 32
Localizing JSPs • 30
Localizing the Business User Interface • 22
Localizing the EditLive Text Editor • 17

M
Maintaining Locales • 23
Merging TMX Files with the Master TMX

Document • 19, 33
Modeling Assembly for Internationalization • 8
Modeling Internationalization of a Rhythmyx

Content Management System • 7
Modeling Internationalized Workflow Processes

• 9
Modeling Internationalized Workflows • 9
Modeling Publishing • 11
Modifying Translation Settings • 35, 37

N
New Locale Wizard • 24, 25, 26

P
Preparing Templates for Localization • 19, 30,

32
Preparing XSL Files for Localization • 27, 30, 32
Publishing Engine • 11, 45

48 Index

R
Removing a Translation Setting • 35, 38
Removing Stale Keywords • 34
Rhythmyx Language Tool • 31, 32, 33, 34

S
Spinning Off Translation Versions of Content

Items • 10
String dependency • 9, 10

T
Translating TMX Files • 19, 32
Translation keys • 14
Translation Setting Editor • 35, 36, 37

U
Updating TMX Files • 33
User-defined Functions • 14
Using Locale-specific Images • 31, 32

W
Weak dependency • 9
Workflow Engine • 9
Workflow Processes in Strong Dependency

Models • 10

	Introduction to Internationalization and Localization in Rhythmyx
	Determining System Requirements
	Modeling Internationalization of a Rhythmyx Content Management System
	Modeling Assembly for Internationalization
	Modeling Internationalized Workflows
	Defining the Content Relationship Model for Translations
	Modeling Internationalized Workflow Processes
	Workflow Processes in Strong Dependency Models

	Spinning Off Translation Versions of Content Items

	Modeling Publishing

	Implementing Internationalization
	Internationalization Support on the Rhythmyx Server
	Localizing the EditLive Text Editor
	Implementing Internationalized Assembly
	Implementing Internationalization of Templates
	Implementing Localized Templates
	Implementing Internationalized Templates
	Preparing Templates for Localization

	Implementing Internationalized Numbers and Date Formats
	Changing Output Character Sets
	Creating Automatic Links to Other Localized Versions of Content

	Localizing the Business User Interface
	Maintaining Locales
	New Locale Wizard
	Locale Editor
	Creating a Locale
	Editing a Locale
	Deleting a Locale

	Preparing XSL Files for Localization
	Localizing JavaScript Files
	Localizing JSPs
	Using Locale-specific Images
	Rhythmyx Language Tool
	Generating TMX Files for Translation
	Translating TMX Files
	Merging TMX Files with the Master TMX Document
	Updating TMX Files
	Removing Stale Keywords

	Defining Translation Properties
	Translation Setting Editor
	Creating Translation Settings
	Modifying Translation Settings
	Removing a Translation Setting

	Implementing Automated Translation
	Example Auto Translation Implementation
	Example Auto Translation Configurations
	Example Transition for Auto Translation
	Example Auto Translation Content Item

	Configuring the sys_createTranslations Workflow Action

	Implementing Internationalized Publishing
	Implementing Language-centric Publishing Models
	Implementing Content-centric Publishing Models

	Full-text Search in Globalized Environments

	Index

