
Rhythmyx

Technical Reference
Manual

Version 7.0.3

 Printed on 8 June, 2009

Copyright and Licensing Statement
All intellectual property rights in the SOFTWARE and associated user documentation, implementation
documentation, and reference documentation are owned by Percussion Software or its suppliers and are
protected by United States and Canadian copyright laws, other applicable copyright laws, and
international treaty provisions. Percussion Software retains all rights, title, and interest not expressly
grated. You may either (a) make one (1) copy of the SOFTWARE solely for backup or archival purposes
or (b) transfer the SOFTWARE to a single hard disk provided you keep the original solely for backup or
archival purposes. You must reproduce and include the copyright notice on any copy made. You may not
copy the user documentation accompanying the SOFTWARE.

The information in Rhythmyx documentation is subject to change without notice and does not represent a
commitment on the part of Percussion Software, Inc. This document describes proprietary trade secrets of
Percussion Software, Inc. Licensees of this document must acknowledge the proprietary claims of
Percussion Software, Inc., in advance of receiving this document or any software to which it refers, and
must agree to hold the trade secrets in confidence for the sole use of Percussion Software, Inc.

The software contains proprietary information of Percussion Software; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright law. Reverse
engineering of the software is prohibited.

Due to continued product development this information may change without notice. The information and
intellectual property contained herein is confidential between Percussion Software and the client and
remains the exclusive property of Percussion Software. If you find any problems in the documentation,
please report them to us in writing. Percussion Software does not warrant that this document is error-free.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written
permission of Percussion Software.

Copyright © 1999-2011 Percussion Software.
All rights reserved

Licenses and Source Code
Rhythmyx uses Mozilla's JavaScript C API. See http://www.mozilla.org/source.html for the source code.
 In addition, see the Mozilla Public License (http://www.mozilla.org/source.html).

Netscape Public License

Apache Software License

IBM Public License

Lesser GNU Public License

Other Copyrights
The Rhythmyx installation application was developed using InstallShield, which is a licensed and
copyrighted by InstallShield Software Corporation.

The Sprinta JDBC driver is licensed and copyrighted by I-NET Software Corporation.

The Sentry Spellingchecker Engine Software Development Kit is licensed and copyrighted by Wintertree
Software.

The Java™ 2 Runtime Environment is licensed and copyrighted by Sun Microsystems, Inc.

The Oracle JDBC driver is licensed and copyrighted by Oracle Corporation.

http://www.mozilla.org/source.html
http://www.mozilla.org/source.html

The Sybase JDBC driver is licensed and copyrighted by Sybase, Inc.

The AS/400 driver is licensed and copyrighted by International Business Machines Corporation.

The Ephox EditLive! for Java DHTML editor is licensed and copyrighted by Ephox, Inc.

This product includes software developed by CDS Networks, Inc.

The software contains proprietary information of Percussion Software; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright law. Reverse
engineering of the software is prohibited.

Due to continued product development this information may change without notice. The information and
intellectual property contained herein is confidential between Percussion Software and the client and
remains the exclusive property of Percussion Software. If you find any problems in the documentation,
please report them to us in writing. Percussion Software does not warrant that this document is error-free.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written
permission of Percussion Software.

AuthorIT™ is a trademark of Optical Systems Corporation Ltd.

Microsoft Word, Microsoft Office, Windows®, Window 95™, Window 98™, Windows NT® and MS-
DOS™ are trademarks of the Microsoft Corporation.

This document was created using AuthorIT™, Total Document Creation (see http://www.author-it.com).

Schema documentation was created using XMLSpy™.

Percussion Software
600 Unicorn Park Drive
Woburn, MA 01801 U.S.A.
 781.438.9900
Internet E-Mail: technical_support@percussion.com
Website: http://www.percussion.com

http://www.author-it.com/

 v

Contents

About the Rhythmyx Technical Reference Manual 9

Content Reference 11
Logical Architecture and Processing ..12

Logical Architecture ..13
Content Editor Configuration ..14
Content Processing ..16
Search Processing..18

Content Editor Extensions ..19
Item Validations ..19
Field Validations ...19
Field Transformers ..23
Item Transformers ...33
Document Pre-processors ..33
Result Document Processors ...33
Writing Content Editor Extensions..34

Content Editor Control Reference ..38
Writing Custom Controls...38
Customizing Controls ..40
Standard Rhythmyx Controls ..45
Creating an Internal Lookup Query...68

Content Editor System Definition Reference..70
Search Reference ..73

Search Indexing ...73
Text Extractors ..73
Text Analyzers...74

Assembly Reference 75
Logical Architecture and Processing: Assembly ...76

Logical Architecture: Assembly ...76
Assembly Processing...79
Assembly Plugin Processing ...80
Recursive Content Roll-up ..83

Velocity in Rhythmyx...85
Embedding Velocity Code in Templates ...86
Standard Velocity Macros ...86
Adding Macros to the Snippet Drawer ..94

Assembly Extensions..98
Assembly Plugins ..98
Slot Content Finders ..102
Writing Assembly Extensions ...105

vi Contents

Workflow Reference 107
Logical Architecture and Processing ..108

Logical Architecture ..108
Workflow Processing ..110

Extending Publishable States..112
Workflow Actions ..113

sys_createTranslations...113
sys_PublishContent ...114
sys_TouchParentItems...116

Publishing Reference 117
Logical Architecture and Processing ..118

Logical Architecture ..118
Publishing Processing..120

Demand Publishing...124
Configuring Unpublish Flags..125
Publishing Extensions...126

Content List Generators...126
Template Expanders ..127
Delivery Handlers..129

Shared Features 131
Java Expression Language (JEXL)...132

JEXL Extensions ...132
Java Content Repository ...143
Item Filters and Filter Rules ...144

Filter Rule Extensions ...144
Link Generation and Context..147

Location Scheme Generator Extensions ..147
Scheduled Tasks ...149

sys_purgePublishingLog ...150
sys_purgeScheduledTaskLog ..151
sys_runCommand ..151
sys_runEdition...152

System Issues 153
Custom Implementations ..154

Implementing Custom Java Server Pages and Servlets ...154
Implementing Transactional Services..156
Extending Java Server Faces Page Flows..158
File Locations ..158
Rhythmyx Request Context...159
Rhythmyx Server Information...159
Integrating Content Explorer Action Menu Entries...159
Spring Configurations ...171
Alternate Hibernate Session Connections to the Rhythmyx Datasource172
Logging for Custom Implementations...172

 Contents vii

Defining Non-Rhythmyx Datasources..173
Security...174

Rhythmyx, JBoss, and JAAS...174
Implementing Custom Authentication...174
Implementing Custom Login Pages...175
Security Extensions ...176
Password Filters...176
Security for Custom Web Applications ...177

Configuring Logging ..178

Extensions 179
General Requirements of Extensions..180
Registering an Extension ..181
Extensions Reference by Type..185
Alphabetical Reference to Rhythmyx Extensions...188
Legacy Extension Reference ..190

Result Document Processing ...190
Request Preprocessing...228
User Defined Function Processing ..264
Workflow Action Processing...287

Index 289

 9

C H A P T E R 1

About the Rhythmyx Technical
Reference Manual

The Rhythmyx Technical Reference Manual provides detailed technical information about the system for
advanced implementers performing advanced implementation and customization of Rhythmyx, such as
developing custom extensions or specialized web applications and JSP pages.

Users of this manual should have attended Developer's Training for the Rhythmyx Content Management
System and should have significant hands-on experience implementing the system.

Users of this manual should already be familiar with the Rhythmyx Concepts Guide and Rhythmyx
Implementation Guide.

 11

C H A P T E R 2

Content Reference

The Content engine is the means by which users enter and maintain content.

The basic content unit in Rhythmyx is the Content Item. A Content Item is a portion of a page, such as an
image, banner, footer, or block of text; or a collection of other Content Items, such as a sidebar, or even a
complete page. By defining a web page in terms of Content Items and collections of Content Items,
Rhythmyx provides the maximum flexibility to modify only the portions of a page that actually change,
leaving the remainder undisturbed, and to reformat individual Content Items for multiple uses.

The first section of this chapter outlines the logical architecture and processing of the Content engine. The
next section is a reference to the extensions used in this engine. The last section documents the controls
available for use on Content Editors.

12 Rhythmyx Technical Reference Manual

Logical Architecture and Processing
This section consists of the following topics:

 Logical Architecture (on page 13)
This topic describes the overall architecture of the Content engine.

 Content Editor Configuration (on page 14)
This topic describes the architecture of Content Editor configuration in detail.

 Content Processing (on page 16)
This topic describes the processing of the Content engine.

 Search Processing (on page 18)
This topic describes the processing of the Search engine.

 Chapter 2 Content Reference 13

Logical Architecture
The Content engine is comprised of two distinct but related engines:

 the Content Editor engine, which allows users to interact with Content Items, and which
interacts with the Repository to add and retrieve Content Item data; and

 the query engine, queries the Repository when users submit searches for Content Items.

Figure 1: Logical architecture of the Content engine

The logical structure of the Content Editor engine consists of a set of business rules and a user interface.
The set of business rules includes a small set of built-in rules (for example, each Content Item must have a
title) and a larger set of configurable business rules. The business rules define such behavior as:

 the set of fields that comprise a Content Item;
 default values for fields when a new Content Item is created;
 processing of the Content Item when it is retrieved from the Repository or updated in the

Repository.

The query engine interacts with the Search engine, which provides a user interface for searches and which
performs additional processing on search results.

14 Rhythmyx Technical Reference Manual

Content Editor Configuration
Content Editor configuration defines the business rules for processing Content Items of a specific Content
Type. Configurations are defined at three levels:

 System definition
The system definition define a set of fields that are always shared across revisions. Some of
these fields are required on all Content Items (such as sys_title, and sys_contentid), but others
are optional. Note that the interface behavior of these fields can be overridden at the local
level, although the field properties cannot be modified at the local level.

 Shared definitions
Each shared definition configuration defines one or more sets of fields (shared field groups)
that are used by more than one Content Editor. An implementation may include any number
of shared definition configurations, or may contain no shared definition configurations. The
interface behavior of fields defined in a shared definition configuration can be overridden at
the local level, although the field properties cannot be modified at the local level.

 Local definition
The local definition defines the set of fields specific to a particular Content Type (each
Content Type must include at least one local field, even if that field is a hidden dummy field).
A specific subset of system fields are always included in a local definition, including:

 System title (sys_title)

 Community ID (sys_communityid)

 Locale (sys_lang)

 Current View (sys_currentview; hidden)

 Workflow ID (sys_workflowid)

 Hibernate Version (sys_hibernateVersion; hidden)

Other systems fields can also be included.

The local definition also specifies which shared fields are included in the Content Type. Note
that in practice, all the fields in a specific shared field group are included in the local
definition, and fields other than those specified are then excluded. In the Repository,
however, when a Content Item is created of a Content Type that includes a shared field, the
space allocated in the Repository for that Content Item includes space for all fields in the
Shared field group. For example, suppose a shared field group included ten fields, but a
Content Type included only one of those fields. Whenever a Content Item of that Content
Type is created, space will be allocated for all ten fields even though only one of them is
being used. Thus shared field groups should be defined as compactly as possible to minimize
the impact of unused fields.

 Chapter 2 Content Reference 15

The local definition defines the Workflows available for Content Items of the Content Type,
as well as any item-level processing, such as item-level validation or data transformations.

Figure 2: Content Editor configuration

Regardless of whether a field is defined in the system, shared, or local definition, the same field
configuration options are available. For each field, a set of basic field properties must be defined, such as
the name of the field, the type of data stored in the field, and its size. Special processing, such as
validation and visibility rules, can also be defined for each field. Each field also requires a user-interface
(UI) definition. The UI definition must at least specify the control used to render the field (including the
sys_hidden control for fields that are never visible), but usually also specifies the label displayed for the
field and may define a label to display if the field contains errors.

16 Rhythmyx Technical Reference Manual

Content Processing
Content processing begins when a user submits a request for a Content Item to the server. If a new
Content Item is requested, a new Content Item instance is created with default values. If an existing
Content Item is requested, the Content Item data is retrieved from the Repository.

Once the Content Item data is available, any output Transforms or other pre-processing extensions are run
on the Content Item. The Content Item is then displayed to the user in a Content Editor interface.

When the user has made all changes, they submit the Content Item to the server. At this point, the server
runs any field validation processing for the Content Item. (Item-level validations are run when a user
performs a Workflow Transition on the Content Item.) If the Content Item fails any validations, it is
returned to the user in the Content Editor interface with error messages displayed.

If the Content Item passes all validations, any input transforms or post-processing extensions are run on it.
The server then sends the Content Item data to the Repository. The updated Content Item data is then
retrieved from the Repository and displayed to the user again.

 Chapter 2 Content Reference 17

Figure 3: Content Engine Processing

When closing a Content Item, the user is given the option of saving the Content Item. If they choose to
save it, it is submitted to the server and the processing described above is executed from that point. If they
choose not to save it, the Content Editor is dismissed and any changes are lost.

18 Rhythmyx Technical Reference Manual

Search Processing
Search processing begins when a search request is issued, such as a user search for a Content Item or a
related content search. If the user issues the search request, a search interface is returned, in which the
user can enter the criteria for the search query. When the user has defined the criteria for the query, they
submit the query to the search engine. The search engine processes the query and returns a set of results.
Rhythmyx may perform some additional filtering on this results set (such as filtering out Content Items
not in the user's currently logged Community) before returning the final results set to the user.

Figure 4: Search processing

 Chapter 2 Content Reference 19

Content Editor Extensions
This section documents extensions used in Content Editor processing, including:

 Item Validations (see below)
 Field Validations (see below)
 Field Transformers (see page 23)
 Item Transformers (see page 33)
 Document Pre-processors (see page 33)
 Result Document Processors (see page 33)

Item Validations
Item Validations are run when a Content Item is Transitioned from one Workflow State to another. Item
Validations operate on multiple fields in a Content Item. In most cases, Field Validations provide
adequate validation functionality, but Item Validations may provide improved performance in some
circumstances. For example, if a field value must be validated against the value of more than one other
field, multiple Field Validations could be implemented. Each of these validations would be run
individually, and could result in diminished performance. Using a single Item Validation instead could
alleviate the performance impact of the validation processing.

Item Validations must implement the interface IPSItemValidator. (NOTE: The implementation must be
thread safe; for details see General Requirements of Extensions on page 180.)

Field Validations
Field validations are the first set of extensions processed when a Content Item is submitted to the
Repository. Field validations process the data in a field to check whether it conforms to specified
validation parameters. If the value in the field does not match the specified validation parameters, an error
is returned. If the field passes the validation, processing continues to the next field. Once all Field
validations have been processed, processing continues to Field transforms.

A field validation validates the data only in the associated field, although it can validate against data in
other fields in the Content Item.

Field validations must implement the interface IPSFieldValidator. (NOTE: The implementation must be
thread safe; for details see General Requirements of Extensions on page 180.)

Note that the Rhythmyx Workbench includes a number of built-in Field Validation functions. In the
server, these functions are implemented as field validation extensions.

20 Rhythmyx Technical Reference Manual

sys_ValidateDateRange
Validates that the date in the field falls within the specified range.

Class Name
com.percussion.validate.PSValidateDate

Interface
com.percussion.extension.IPSFieldValidator

Context
global/percussion/content/

Parameters

Name Data Type Description

value Object The value to be validated. If the value is a string (java.lang.String), it is
converted to a date (java.util.Date); a value that is a date is evaluated
directly.

min Object The minimum date value. Can be either a java.util.Date or a
java.lang.String (which is converted to a date). This value is not
included in the range unless the includemin flag is set to true.

includemin Object If the value is true, the range includes the minimum value. Otherwise
the range does not include the minimum value. Can be either a
java.lang.Boolean or a java.lang.String (which will be converted to a
Boolean value; "true", "yes", or "t" [case-insensitive] convert to true, all
others convert to false).

max Object The maximum date value. Can be either a java.util.Date or a
java.lang.String (which is converted to a date). This value is not
included in the range unless the includemax flag is set to true.

includemax Object If the value is true, the range includes the maximum value. Otherwise
the range does not include the maximum value. Can be either a
java.lang.Boolean or a java.lang.String (which is converted to a Boolean
value; "true", "yes", or "t" [case-insensitive] convert to true, all others
convert to false).

sys_ValidateJexlFieldExpression
Validates that the value of the field falls within the specified range.

Class Name
com.percussion.validate.PSValidateJexlExpression

Interface
com.percussion.extension.IPSFieldValidator

 Chapter 2 Content Reference 21

Context
global/percussion/content/

Parameters

Name Data Type Description

value Object The value to be validated, used without conversion, but extracted if a
replacement value.

expression String The Java Expression Language (JEXL) expression to use to validate the
value. The value must be bound as $value.

sys_ValidateNumberRange
Validates that the numeric value in the field falls within the specified range.

Class Name
com.percussion.validate.PSValidateNumber

Interface
com.percussion.extension.IPSFieldValidator

Context
global/percussion/content/

Parameters

Name Data Type Description

value Object The value to be validated. The value can be a java.lang.Number, a
replacement value, or a java.lang.String. Values of the type
java.lang.Number or replacement values are evaluated directly. Values
of the type java.lang.String are converted to Double before evaluation.

min Object The minimum date value. Can be either a java.lang.Number or a
java.lang.String (which will be converted to a Double). This value is
not included in the range unless the includemin flag is set to true.

includemin Object If the value is true, the range includes the minimum value. Otherwise
the range does not include the minimum value. Can be either a
java.lang.Boolean or a java.lang.String (which is converted to a Boolean
value; "true", "yes", or "t" [case-insensitive] converts to true, all others
convert to false).

max Object The maximum date value. Can be either a java.lang.Number or a
java.lang.String (which is converted to a Double). This value is not
included in the range unless the includemax flag is set to true.

22 Rhythmyx Technical Reference Manual

Name Data Type Description

includemax Object If the value is true, the range includes the maximum value. Otherwise
the range does not include the maximum value. Can be either a
java.lang.Boolean or a java.lang.String (which is converted to a Boolean
value; "true", "yes", or "t" [case-insensitive] will convert to true, all
others convert to false).

sys_ValidateRequiredField
Validates that field contains a value.

Class Name
com.percussion.validate.PSValidateRequired

Interface
com.percussion.extension.IPSFieldValidator

Context
global/percussion/content/

Parameters

Name Data Type Description

value Object The value to be validated; used without conversion, but is extracted if a
replacement value

sys_ValidateStringLength
Validates that the length of the string value in the field falls within the specified range.

Class Name
com.percussion.validate.PSValidateStringLength

Interface
com.percussion.extension.IPSFieldValidator

Context
global/percussion/content/

Parameters

Name Data Type Description

value Object The value to be validated; is extracted if a replacement value

 Chapter 2 Content Reference 23

Name Data Type Description

min Object The minimum length for the string. Can be either a java.lang.Number
or a java.lang.String (which is converted to a Double).

max Object The maximum length for the string. Can be either a java.lang.Number
or a java.lang.String (which is converted to a Double).

sys_ValidateStringPattern
Validates that the value of the field matches the regular expression.

Class Name
com.percussion.validate.PSValidateStringPattern

Interface
com.percussion.extension.IPSFieldValidator

Context
global/percussion/content/

Parameters

Name Data Type Description

value String The value to be validated; should be a string or a replacement value.

regex String The string pattern to be compared with the value.

Field Transformers
When a Content Item is submitted to the Repository, Field Transformers are processed after Field
Validations and before Item Transforms. Field Transformers transform either the format or the content of
data in a Content Item field. Field Transformers fall into two categories:

 Field Input Transforms change the format or content of data before it is entered into the
Rhythmyx Repository.

 Field Output Transforms change the format or content of data after it is retrieved from the
Rhythmyx Repository before it is rendered in a Content Editor or assembled into a Content
Item.

Field transformers operate only on a specific field. If you need to manipulate multiple fields (for example
concatenating the values in multiple fields to generate the value updated to the Repository), you must use
an Item transformer.

Once all field transformers have been run, Item transformers are run.

24 Rhythmyx Technical Reference Manual

Field input transformers must implement the interface IPSFieldInputTransformer; field output
transformers must implement the interface IPSFieldOutputTransformer. (NOTE: The implementation
must be thread safe; for details see General Requirements of Extensions on page 180.)

Note that the Rhythmyx Workbench includes a number of built-in Field Transformer functions. In the
server, these functions are implemented as Field Transformer extensions.

Input Transformers

sys_MapInputValue
Maps an input value to a specified set of keys and values. Note that this extension has a defined interface
in the Workbench (when the Map option is selected for an input transformer.

Class Name
com.percussion.extensions.translations.PSMapInputValue

Interface
com.percussion.extension.IPSFieldInputTransformer

Context
global/percussion/content/

Parameters

Name Data Type Description

value String The value to be transformed.

map Object A map of values encoded as a URL query string. The name/value pairs
are separated by ampersands; within each pair, the name is separated
from the value by an equal sign. The actual name and value are URL
encoded.

sys_NormalizeDate
Normalizes input date to ISO standard format.

Class Name
com.percussion.validate.PSNormalizeDate

Interface
com.percussion.extension.IPSFieldInputTransformer

 Chapter 2 Content Reference 25

Context
global/percussion/content/

Parameters

Name Data Type Description

value String The value to be transformed.

format String Simple date format template of the input value.

sys_OverrideLiteral

Context
Java/global/percussion/generic/

Description
This UDF converts the supplied 'default' parameter to a String and returns either that string or the value of
the overrideParameterName HTML parameter. If the HTML request includes this parameter, it is
removed from the request after it is used.

Class Name
com.percussion.extensions.general.PSSimpleJavaUdf_overrideLiteral

Interface
com.percussion.extension.IPSUdfProcessor

Parameters

Name Data Type Description

default java.lang.String The default object, which is returned as a string. Required.

overrideParameterName java.lang.String The name of the HTML parameter that stores the value which
which to override the default value. Optional.

sys_Replace

Context:
Java/global/percussion/generic/

Description:
Replaces each occurrence of search in source with replacement.

26 Rhythmyx Technical Reference Manual

Class name:
com.percussion.extensions.general.PSSimpleJavaUdf_replace

Interface:
com.percussion.extension.IPSUdfProcessor

Parameters:

Name Data Type Description

source java.lang.String The original string.

search java.lang.String The substring for which the exit searches.

replacement java.lang.String The replacement value for the search string.

sys_ToHash

Context:
Java/global/percussion/generic/

Description:
Converts supplied parameters to a hashcode by concatenating them with a delimiter.

Class name:
com.percussion.extensions.general.PSSimpleJavaUdf_toHash

Interface:
com.percussion.extension.IPSUdfProcessor, com.percussion.extension.IPSFieldInputTransformer,
com.percussion.extension.IPSFieldOuputTransformer

Parameters:

Name Data Type Description

source1 java.lang.String First string to include in the hash code.

source2 java.lang.String Second string to include in the hash code

source3 java.lang.String Third string to include in the hash code

source4 java.lang.String Fourth string to include in the hash code

 Chapter 2 Content Reference 27

sys_ToLowerCase

Context:
Java/global/percussion/generic/

Description:
This exit converts a UDF-supplied string to lower case.

Class name:
com.percussion.extensions.general.PSSimpleJavaUdf_toLowerCase

Interface:
com.percussion.extension.IPSUdfProcessor

Parameters:

Name Data Type Description

source java.lang.String The string to convert.

sys_ToProperCase

Context:
Java/global/percussion/generic/

Description:
This exit capitalizes the first character of every word in the UDF-supplied string.

Class name:
com.percussion.extensions.general.PSSimpleJavaUdf_toProperCase

Interface:
com.percussion.extension.IPSUdfProcessor

Parameters:

Name Data Type Description

source java.lang.String The string to convert.

28 Rhythmyx Technical Reference Manual

sys_ToUpperCase

Context:
Java/global/percussion/generic/

Description:
This exit converts each character in the UDF-supplied string to upper case.

Class name:
com.percussion.extensions.general.PSSimpleJavaUdf_toUpperCase

Interface:
com.percussion.extension.IPSUdfProcessor

Parameters

Name Data Type Description

source java.lang.String The string to convert.

sys_TranslateJexlExpressionValue
Evaluates a Java Expression Language (JEXL) expression and outputs the result for update to the
Repository. To use the input value of the field, use the variable $value, which is bound to the value of the
value parameter.

Class Name
com.percussion.extensions.translations.PSJexlInputTranslation

Interface
com.percussion.extension.IPSFieldInputTransformer

Context
global/percussion/content/

Parameters

Name Data Type Description

value Object The value to be transformed.

expression String The JEXL expression to evaluate. To use the input value of the field,
use the variable $value, which is bound to the value of the value
parameter.

 Chapter 2 Content Reference 29

sys_Trim

Context:
Java/global/percussion/generic/

Description:
This exit strips leading and trailing white space from the supplied string. It does this by calling toString()
on the supplied object.

Class name:
com.percussion.extensions.general.PSStringTrimmerUdf

Interface:
com.percussion.extension.IPSUdfProcessor

Parameters:

 Name Data Type Description

source java.lang.String The string to trim.

sys_TrimString
Trims whitespace in the input value. Whitespace can be trimmed before the input value, after, or both
before and after.

Class Name
com.percussion.extensions.translations.PSTrimStringValue

Interface
com.percussion.extension.IPSFieldInputTransformer

Context
global/percussion/content/

Category String
translation

Parameters

Name Data Type Description

value String The value to be transformed.

30 Rhythmyx Technical Reference Manual

Name Data Type Description

trim String Specifies how to trim the input value. Options are start (trims
whitespace at the start of the input string), end (trims whitespace at the
end of the input string, or both (default; trims whitespace both at the
start and at the end of the input string).

Output Transformers

sys_DateFormat

Context:
Java/global/percussion/generic/

Description:
This exit formats the supplied date using the UDF-supplied pattern. Any Java SimpleDateFormat patterns
(http://java.sun.com/j2se/1.3/docs/api/java/text/SimpleDateFormat.html) are acceptable. Before the exit
runs, the user must define two objects through the GUI.

The first object is a string representing a desired format. The second object is a string representing a
reference input date. The date string should be in a format recognizable by the Rhythmyx server's
PSDataConverter, otherwise the exit throws an exception that terminates the format procedure.

Class name:
com.percussion.extensions.general.PSSimpleJavaUdf_dateFormat

Interface:
com.percussion.extension.IPSUdfProcessor

Parameters

Name Data Type Description

pattern java.lang.String The format pattern

date java.util.Date The date to format

returnNullForEmpty java.lang.String Defines the behavior if the value of the column is empty. Valid
values are true and false; default is false.

If the value of this parameter is true, a null is inserted into the XML
document if the database column is empty. If the value of this
parameter is false, the current date is inserted into the XML document
if the database column is empty. If this parameter has any other
value, or if the value is not specified, the system assumes the default
value of false.

http://java.sun.com/j2se/1.3/docs/api/java/text/SimpleDateFormat.html

 Chapter 2 Content Reference 31

sys_DateFormatEx

Context:
Java/global/percussion/generic/

Description:
This exit formats the supplied date according to a user-supplied input pattern and saves it as a string using
the supplied output pattern. Any Java SimpleDateFormat patterns
(http://java.sun.com/j2se/1.3/docs/api/java/text/SimpleDateFormat.html) are acceptable for the input and
output patterns.

Class name:
com.percussion.extensions.general.PSSimpleJavaUdf_dateFormatEx

Interface:
com.percussion.extension.IPSUdfProcessor

Parameters:

Name Data Type Description

outputPattern java.lang.Object Optional. The output format pattern. If not provided, the
exit uses the default: yyyy/mm/dd hh:mm:ss

date java.lang.Object Optional. The date to format. The function accepts
java.util.Date and java.lang.String types. If not provided,
the exit uses the default of current date and time.

inputPattern java.lang.Object Optional. The input format pattern of the provided date. If
not provided, the exit tries to find the input pattern.

returnNullForEmpty java.lang.String Defines the behavior if the value of the column is empty.
Valid values are true and false; default is false.

If the value of this parameter is true, a null is inserted into
the XML document if the database column is empty. If the
value of this parameter is false, the current date is inserted
into the XML document if the database column is empty.
If this parameter has any other value, or if the value is not
specified, the system assumes the default value of false.

sys_FormatDate
Converts a date field value output from the Repository from ISO standard to another format.

Class Name
com.percussion.extensions.translations.PSFormatDate

http://java.sun.com/j2se/1.3/docs/api/java/text/SimpleDateFormat.html

32 Rhythmyx Technical Reference Manual

Interface
com.percussion.extension.IPSFieldOutputTransformer

Context
global/percussion/content/

Parameters

Name Data Type Description

value String The value to be transformed.

format String Simple date format template to which to convert the date extracted from
the Repository.

sys_MapOutputValue
Maps an input value to a specified set of keys and values. Note that this extension has a defined interface
in the Workbench (when the Map option is selected for an input transformer.

Class Name
com.percussion.extensions.translations.PSMapOutputValue

Interface
com.percussion.extension.IPSFieldOutputTransformer

Context
global/percussion/content/

Parameters

Name Data Type Description

value String The value to be transformed.

map Object A map of values encoded as a URL query string. The name/value pairs
are separated by ampersands; within each pair, the name is separated
from the value by an equal sign. The actual name and value are URL
encoded.

 Chapter 2 Content Reference 33

Item Transformers
When a Content Item is submitted to the Repository, Item Transformers are processed after Field
Transformers but before generic post-processors. Item Transformers transform data in multiple fields,
such as combining the values in two or more fields to generate the value updated to the Repository. Item
transformers fall into two categories:

 Item Input Transformers change the format or content of data before it is entered into the
Rhythmyx Repository.

 Item Output Transformers change the format or content of data after it is retrieved from the
Rhythmyx Repository and before it is rendered in a Content Editor or assembled into a
Content Item.

Item input transformers must implement the interface IPSItemInputTransformer; Item output transformers
must implement the interface IPSItemOutputTransformer. (NOTE: The implementation must be thread
safe; for details see General Requirements of Extensions on page 180.)

Note that no default Item output transformers are shipped with Rhythmyx.

Document Pre-processors
Document pre-processors are run when a Content Item is created or retrieved by Rhythmyx or before a
lookup document is generated. Document pre-processors can be used to modify any parameter submitted
with the request or to generate a default value.

NOTE: In common usage, document pre-processors are often referred to as "pre-exits", or collectively
with result document processors simply as "exits".

Document pre-processors must implement the interface IPSRequestPreprocessor. (NOTE: The
implementation must be thread safe; for details see General Requirements of Extensions on page 180.)

Rhythmyx is shipped with a number of legacy document preprocessor extensions for backwards-
compatibility. For details, see Legacy Extension Reference on page 190.

Result Document Processors
Result document processors are run when a Content Item is submitted to the Repository or after a lookup
document has been generated.

NOTE: In common usage, result document processors are often referred to as "post-exits", or collectively
with document pre-processors simply as "exits".

Result document processors must implement the interface IPSResultDocumentProcessor. (NOTE: The
implementation must be thread safe; for details see General Requirements of Extensions on page 180.)

Rhythmyx is shipped with a number of legacy result document processor extensions for backwards-
compatibility. For details, see Legacy Extension Reference on page 190.

34 Rhythmyx Technical Reference Manual

Writing Content Editor Extensions
Most of the manipulations performed on Content Item data by a Content Editor extension are equivalent to
standard actions performed in a Content Editor. This section describes the code that you can use to
perform these actions.

Complex child content must be handled separately from the parent Content Item. Therefore, this section
has two sub-sections, one devoted to manipulation of Content Items and one devoted to manipulation of
child content.

In the interest of clarity, error checking has been omitted from the code examples in this section. In most
cases, an exception will be returned if the object you request does not exist, but in some cases null values
or empty sets are returned instead. Review the JavaDoc of the cited methods for details about which
methods throw exceptions and which return null or empty values.

In some cases, default or hard-coded values have been provided for parameters. The JavaDoc describes
these parameters in detail.

Basic Editing Operations
This section illustrates simple examples of common operations on Content Items. Note that all methods
illustrated operate on lists of Content Items, while the simple examples in the code operate on one
example at a time. It is more efficient to build a list of Content Items and perform the operation on the
whole list rather than operating individually on each Content Item.

Creating New Content Items
Use IPSContentWs.createItems() to create a new Content Item:

public static PSCoreItem createBrief(String session, String user)
 throws PSUnknownContentTypeException, PSErrorException
 {
 initServices();
 String typeName = "rffBrief";
 List<PSCoreItem> items = cws.createItems(typeName, 1, session,
user);
 return items.get(0);
 }

New Content Items do not have a Content ID until they are saved by calling the saveItems() method.
Thus, you cannot create complex child items or Relationships of any kind until the new Content Items
have been saved.

A new Content Item always has a Revision of "1".

When a new Content Item is created, it contains all local and shared fields defined for the Content Type.
If a default value is specified for any fields, the field will contain that default value.

Loading Existing Content Items
To load existing Content Items, use IPSContentWs.loadItems(). In most cases, before loading
Content Items, you will want to call IPSContentWs.prepareForEdit() on those Content Items
first.

public static PSCoreItem loadItem(String contentId, String session,
String user)
 throws PSErrorResultsException

 Chapter 2 Content Reference 35

{
 initServices();
 IPSGuid cid = gmgr.makeGuid(new PSLocator(contentId));
 List<IPSGuid> glist = Collections.<IPSGuid>singletonList(cid);
 List<PSItemStatus> statusList = cws.prepareForEdit(glist, user);
 List<PSCoreItem> items = cws.loadItems(glist, true, false, false,
false, session, user);
 return items.get(0);
}

Note that in this fragment, the binary fields are loaded, but child content, related Content Items, and
Folder paths are not loaded.

Managing Revisions
In the example code for loading existing Content Items, they were loaded without specifying a Revision.
Once the Content Items are loaded, the Revision can be obtained and a new GUID created for other
purposes:

int contentid = item.getContentId();
int revision = item.getRevision();
IPSGuid guid = gmgr.makeGuid(new PSLocator(contentid, revision));

On occasion, you may need to know the current or edit locator of a Content Item you do not have loaded.
Use PSComponentSummary to access this data. The PSO toolkit provides a
convenient static method for accessing PSComponentSummary.

PSComponentSummary summ = PSOItemSummaryFinder.getSummary(contentid);
PSLocator loc = PSOItemSummaryFinder.getCurrentOrEditLocator(contentid);

Use the getSummary() method to accessing information about the Content Item (such as who has it
checked out). The getCurrentOrEditLocator() method returns the edit locator if it exists;
otherwise, it returns the current locator.

Manipulating Fields
When Content Items are loaded or created, all of the defined fields are populated, except for binary fields,
which are optional.

Fields can be loaded using the method PSCoreItem.getFieldByName
PSItemField title = item.getFieldByName("sys_title");
String label = RxItemUtils.getFieldValue(item, "display_title");
Date someDate = RxItemUtils.getFieldDate(item, "some_date");

The PSO toolkit class RxItemUtils provides convenient static methods for retrieving and setting fields
by name:

RxItemUtils.setFieldValue(item, "myfield", "some value");
RxItemUtils.setFieldValue(item, "some_date", new Date());

Binary fields can handled in a similar fashion:
InputStream istream = new ByteArrayInputStream(buf);
RxItemUtils.setFieldValue(item, "binary_field", istream);

Saving Content Items
To save Content Items, use IPSContentWs.saveItem:

public static IPSGuid simpleSave(PSCoreItem item, String session, String
user) throws PSErrorResultsException
{

36 Rhythmyx Technical Reference Manual

 List<PSCoreItem> items =
Collections.<PSCoreItem>singletonList(item);
 List<IPSGuid> guids = cws.saveItems(items, false, false,
session,user);
 return guids.get(0);
}

If any Content Items were opened using a sequence of prepareForEdit() followed by
loadItems() as described earlier, they must be released . If the Content Item is new, simply checking
it in is usually enough to release from edit.

public static void releaseItem(IPSGuid guid, PSItemStatus itemStatus,
String user) throws PSErrorsException
{
 if(itemStatus != null)
 { //we got it from prepareForEdit
 List<PSItemStatus> stats =
 Collections.<PSItemStatus>singletonList(itemStatus);
 cws.releaseFromEdit(stats, false);
 }
 else
 { //a new item, just check it in.
 List<IPSGuid> glist = Collections.<IPSGuid>singletonList(guid);
 cws.checkinItems(glist, "no comment", user);
 }
}

Note, however, that releasing a Content Item from edit can occur much later than the save of the Content
Item.

Editing Complex Child Data
Complex child data is manipulated separately from the parent Content Item. Complex children require a
valid parent Content ID, so child entries cannot be created until the parent Content Item has been saved
(which creates the Content ID for the parent). A Content Type may have several different complex child
field sets. Each of these field sets has a unique name defined in the parent Content Type. The name is
used to retrieve child content records.

Rhythmyx includes two different APIs for working with complex children: an "inner API" on the
PSCoreItem itself and an "outer API on PSContentWs. You cannot mix the two APIs; for example you
cannot call loadItems with the includeChildren flag set to true, then use IPSContentWs.saveChildEntries
to save the children.

The example code provided in the following topics uses the "outer API". There is no substantial
performance difference between the two APIs, but the outer API is generally simpler for programmers
new to Rhythmyx.

Creating New Child Entries
Use the method IPSContentWs.createChildEntries() to create new child entries.

if(newChild)
{
 List<PSItemChildEntry> newEntries =cws.createChildEntries(item,
childName, 1, session, user);
 // update the child fields here
 RxItemUtils.setFieldValue(newEntries.get(0), "child_field","some
textValue");

 Chapter 2 Content Reference 37

 toBeSaved.addAll(newEntries);
}

As with Content Items, the child entries are not persisted to the Repository at this time; the entries must be
saved. The newly created entries can be modified just as other fields.

Loading Existing Child Entries
To load existing child entries, use the method IPSContetnWs.loadChildEntries().

List<PSItemChildEntry> children = cws.loadChildEntries(item,
childName,false, session, user);

These entries can be modified in the same fashion as field son the parent Content Item.

Modifying Child Fields
Child fields are read and modified in the same way that fields are read and manipulated on the parent
Content Item. The fields have values and you can use the same convenience methods on child fields as
are used on fields in the parent Content Item.

PSItemField field = child.getFieldByName("child_field");
RxItemUtils.setFieldValue(child, "child_field", "some new value");

Saving Child Entries
After child entries have been modified, changes can be saved using the method
IPSContentWs.saveChildEntries

PSItemField field = child.getFieldByName("child_field");
RxItemUtils.setFieldValue(child, "child_field", "some new value");

Some child field sets support ordering (the field set is defined with a sortrank field). The
saveChildEntries method saves the entries, but does not set the order. The entries must be re-
ordered after being saved.

List<IPSGuid> toBeOrdered = new ArrayList<IPSGuid>();
for(PSItemChildEntry childEntry : children)
{
 toBeOrdered.add(childEntry.getGUID());
}
cws.reorderChildEntries(item, childName, toBeOrdered, session, user);

Note that the re-order list is a list of GUIDs, not a list of PSItemChildEntry.

Removing Child Entries
To remove child entries, use IPSContentWs.deleteChildEntries. Note that the list of entries to delete is a
list of GUIDs, not a list of PSChildEntry objects.

List<IPSGuid> toBeDeleted = new ArrayList<IPSGuid>();
toBeDeleted.add(child.getGUID());
cws.deleteChildEntries(item, childName, toBeDeleted, session, user);

38 Rhythmyx Technical Reference Manual

Content Editor Control Reference
As with any interface, Content Editors require controls that allow the user to interact with the data.
Rhythmyx Content Editors use a set of controls similar to those commonly found on HTML pages. In
Rhythmyx, these controls are defined using XSL and JavaScript.

Writing Custom Controls
Content Editors use a set of controls defined in XSL stylesheets.

Standard controls are defined in <CMServerroot>/ sys_resources
/Stylesheets/sys_Templates.xsl.Customers should not modify controls defined in this file as
it is overwritten on upgrade and modifications will be lost. Customers should not modify controls defined
in this file as it is overwritten on upgrade and modifications will be lost. All controls provided by
Percussion Software begin with the string "sys_"; for example, sys_DatePicker. User-developed
controls should not begin with this prefix.

Custom controls can be defined in two ways.

Custom controls that can be included in a package must be defined in XSL files in the directory
<CMServerroot>/rx_resources/stylesheets/controls. Each custom control must have
a unique XSL file, and the XSL file should have the same name as the control; for example, if you wanted
to make a new calendar control named rff_newCalendar, the XSL file containing the control would be
rff_newCalendar.xsl.

Custom controls that will not be included in a package can be defined in the file
<CMServerroot>/rx_resources/Stylesheets/rx_Templates.xsl. If you want to
package a control that is already defined in this file, you must re-implement it as described in the previous
paragraph.

Control Header
The control header stores the metadata that defines the control, including the name and description of the
control, any parameters, associated files, or exits required for the control to function and process data
correctly. The formal definition of the controls is defined in the sys_LibraryControlDef.dtd.

The header must be added to the sys_template.xsl or rx_template.xsl immediately before the
first <xsl:template> block related to the control. Rhythmyx uses this header when selecting
controls. If the control header is missing or invalid, Rhythmyx cannot select the control. The control will
continue to work unless it requires external script files, however.

All control definitions exist in the "psxctl" namespace. The full declaration of this namespace is:
xmlns:psxctl="URM:percussion.com/control"

Any files required for the control to function must be listed in the AssociatedFiles element of the header.
 The children of this element describe the file and specify its location.

 Chapter 2 Content Reference 39

Any extensions required by the control must be specified in the Dependencies element. The attributes of
this element specify whether the extension requires additional setup and whether you must add additional
iterations of the exit for each appearance of the control. The child elements specify the exit to call and any
parameters you must specify for it. You must add these exits to the content editor resource in the content
editor application.

Control Template Standards
A control template must meet the following standards:

 The template must match on a <Control> element with a specific name. The main
templates must use the mode "psxcontrol". For example:

 <xsl:template match="Control[@name='sys_DatePicker']"
mode="psxcontrol">

 Controls should be written to conform to the shape of the table, and should not contain fixed-
width formats.

 All controls use the same cascading stylesheet styles that are used in the editors.
 The datadisplay style will be used unless some special effects are required.
 The datacell1 and datacell2 styles can be used for alternating rows in complex

controls.
 The columnhead2 style will be used for labels.
 All controls must be capable of rendering both "read-only" and "writable" forms. The forms

do not have to resemble each other. The read-only form of the control must also be an HTML
form element that returns the current field value; for example, <input type="hidden"
name="sample" value="blank" />.

Control Events
Individual form elements do not have "load" and "submit" events, and therefore certain controls will need
JavaScript event code on the Form and Document level. To add JavaScript code to a control, build
another <xsl:template> with a mode that matches the event name.

The output of any event template should:

 be a single string;
 be well-formed;
 end with a semi-colon.

Multiple template events are concatenated together into a single onLoad or onSubmit attribute.

Control templates that do not implement these events can either provide an empty template (for example:
<xsl:template match = "Control[@name='sys_picker']" mode="psxcontrol –
body-onload"/>)

or no template at all. Providing an empty template can be faster because it shortcuts the search for a
template match.

To prevent events from being rendered as text items if the event is empty, the system control library
includes a default empty template for each defined event. For example:

<xsl:template match="Control" mode="psxcontrol –docload"/>

40 Rhythmyx Technical Reference Manual

Currently, the following events are defined within Rhythmyx:

HTML Event Mode Name

document.load psxcontrol-body-onload

form.submit psxcontrol-form-onsubmit
Use the AssociatedFileList element to add the JavaScript file. The following example is from the
sys_CalendarSimple control

<psxctl:AssociatedFileList>
 <psxctl:FileDescriptor name="calPopup.js" type="script"
mimetype="text/javascript">

 <psxctl:FileLocation>../rx_resources/js/calPopup.js</psxctl:FileLocat
ion>
 <psxctl:Timestamp></psxctl:Timestamp>
 </psxctl:FileDescriptor>
</psxctl:AssociatedFileList>

Customizing Controls
Certain Rhythmyx controls allow customization short of implementing a new control. Controls that allow
customization include:

 sys_EditLive
 sys_WebImageFX

Customizing the EditLive! for Java Editor
You can customize both the parameters of the sys_EditLive control and the configuration files of the
EditLive! for Java editor itself.

Customizing the sys_EditLive control
The parameters of the sys_EditLive control define the height and width of the display of the editor and the
path to its configuration file (elj_config.xml) as well as other properties. You can customize these
parameters in the control definition (in the Control Properties dialog accessible from the Rhythmyx
Workbench). If you customize the configuration file for the ELJ editor, update the config_src_url
parameter of each instance of the sys_EditLive control to point to the correct configuration file.

See sys_EditLive Control (on page 52) for a list of the parameters that you can customize and instructions
on how to change them.

Customizing EditLive! for Java Configuration
The EditLive! for Java (ELJ) editor is a robust and highly customizable HTML editor.

Most customizations of the ELJ editor involve modifications to the configuration file (elj_config.xml in
the Rhythmyx implementation). Do not modify the default configuration file, which is located in the
<Rhythmyxroot>/sys_resources/ephox directory. Instead, modify the copy in
<Rhythmyxroot>/rx_resources/ephox.

You may create multiple custom configuration files for the sys_EditLive control and give them different
names or store them in different directories.

 Chapter 2 Content Reference 41

To customize the control, you may want to add javascript functions that extend its capabilities. See
Adding Custom Menu and Toolbar Actions (on page 42) for instructions on adding custom javascript
functions.

Several instances of the sys_EditLive control can use the same configuration XML file (shared
configuration file), or you can use a local configuration file for each instance of the editor; you can also
use a shared configuration file for some instances and a local configuration file for other instances. As a
best practice, store the files in the following manner:

 The default configuration file is stored in the directory sys_resources/ephox. This
configuration file should not be modified.

 Shared configuration files should be stored in a directory with the path
rx_resources/[path]/ephox, where [path] is the path to a subdirectory that
logically categorizes the file. For example, you might want to use the name of your project as
part of the path; for a project with the name sample, the path would be
rx_resources/sample/ephox.

 Local configuration files should be stored in rx_resources/ephox or a subdirectory
created under this directory. For example, if you have a local configuration file for a Press
Release content editor, you might want to store the configuration file in the subdirectory
rx_resources/ephox/pressrelease.

To define an instance of the sys_EditLive control to use a customized configuration file:

1 In the Rhythmyx Workbench, open the Content Type editor for the Content Type in which
you want to use the ELJ editor.

2 Select the field in which you want to use the ELJ editor or add a new field.

3 In the Control field, choose sys_EditLive.

4 Click the browse button (…) next to the Control field.

Rhythmyx displays the Control Properties dialog.

5 Click in the Name column and choose config_src_url.

6 Click in the Value column of the same row and enter the URL (relative to the Rhythmyx root)
of the configuration file you want to use for this instance of the control as a literal value.

7 On the Control Properties dialog, click [OK].

8 Save the changes to the Content Type.

To see your changes, log in to Rhythmyx, and activate the editor.
For guidance on customizing (and localizing) the ELJ editor, consult EditLive documentation at
http://liveworks.ephox.com/documentation/editlive/v60/.

http://liveworks.ephox.com/documentation/editlive/v60/

42 Rhythmyx Technical Reference Manual

Customizing the sys_EditLiveDynamic control
Note: This control is deprecated. Customers who installed Rhythmyx prior to Version 6.5.2 may have
fields that use it.

The parameters of the sys_EditLiveDynamic control define the control for any field that uses it in a
Content Editor. You can customize these parameters in the control definition (in the Control Properties
dialog). We recommend first changing the control to the sys_EditLive control in the Rhythmyx
Workbench, and then following the instructions in sys_EditLive Control (on page 52) to customize the
parameters.

You can customize the configuration file for the sys_EditLiveDynamic control if you want to implement
your own toolbars and menus. We recommend first changing the control to the sys_EditLive control in the
Rhythmyx Workbench, and then following the instructions in Customizing EditLive! for Java
Configuration (see page 40) and Adding Custom Menu and Toolbar Actions (on page 42) for help
customizing your configuration file.

Adding Custom Menu and Toolbar Actions
Rhythmyx provides you with xml code that you can use to create custom actions for your sys_EditLive
controls. The xml code is located in <Rhythmyx root>/rx_resources/ephox/rx_ephox_custom.xml.

To add the toolbar button and/or menu choice associated with the custom action, you must modify your
config file (elj_config.xml by default). To add the custom action, you must add a javascript function that
uses the EditLive Java API to the rx_ephox_custom.xml file.

Rhythmyx adds your modified code to the sys_EditLive template in sys_Templates.xsl, which
incorporates it into the control.

To create a custom sys_EditLive function:

This procedure uses the example of an action that opens a window showing the source code between the
body tags in the sys_EditLive control.

1 Modify your config file (elj_config.xml by default) to show the new menu item and/or toolbar
button. The EditLive JavaScript API defines the elements <customMenuItem> and
<customToolbarButton> which you configure as shown in this step to add the new Menu item
and/or Toolbar button.

a) Find the <menu> sub-element for the menu that you want to add the action to in the
<menubar> element in the configuration file and add a <customMenuItem> element for
the action. Below, the <customMenuItem> element is shown in bold. Copy the format of
this sample element.

<menu name="ephox_editmenu">
 <menuItem name="Undo"/>
 <menuItem name="Redo"/>
 <menuSeparator/>
 <menuItem name="Cut"/>
 <menuItem name="Copy"/>
 <menuItem name="Paste"/>
 <menuItem name="PasteSpecial"/>
 <menuSeparator/>
 <menuItem name="Select"/>
 <menuItem name="SelectAll"/>
 <menuSeparator/>
 <menuItem name="Find"/>
 <menuSeparator/>

 Chapter 2 Content Reference 43

 <customMenuItem action="raiseEvent"
imageURL="../rx_resources/ephox/images/bSource.gif" name="ShowBodySource"
rxconfig="yes" text="Shows Body Source" value="RxEphoxShowBodySource"/>
</menu>

b) Find the <toolbar name="Command"> sub-element in the <tools> element in the
configuration file and add a <customToolbarButton> element for the action. Below, the
<customToolbarButton> element is in bold. Copy the format of this sample element.

<toolbar name="Command">
 <toolbarButton name="Cut"/>
 <toolbarButton name="Copy"/>
 <toolbarButton name="Paste"/>
 <toolbarSeparator/>
….
 <customToolbarButton action="raiseEvent"
imageURL="../rx_resources/ephox/images/bSource.gif" name=" ShowBodySource "
rxconfig="yes" text=" Shows Body Source " value=" RxEphoxShowBodySource "/>
</toolbar>

2 Add the JavaScript function to rx_ephox_custom.xml. Replace RxEphoxDummyFunction
with your own. In our example, the custom JavaScriptFunction is:

<![CDATA[
 function RxEphoxShowBodySource_]]><xsl:value-of select="$name"/><![CDATA[()
 {
 // Get EditLive editor instance
 var EditorName = "]]><xsl:value-of select="@paramName" /><![CDATA[";
 var editor = getEditor(EditorName);
 //Get a reference to the EditLive applet
 var ephox = editor.objectref;

 var body = ephox.GetBody(‘rxShowBody_]]><xsl:value-of
select="$name"/><![CDATA[’, false); // call back function
 }

 function rxShowBody_]]><xsl:value-of select="$name"/><![CDATA[(body)
 {
 alert(body);
 }

]]>

For additional information about adding custom functions, see the Ephox EditLive! for Java Developer's
Guide in <Rhythmyx root>/sys_resources/ephox/ephox_developerguide.pdf.

Customizing the WebImageFX Editor
You can customize both the parameters of the sys_WebImageFX control and the configuration files of the
WebImageFX editor itself.

44 Rhythmyx Technical Reference Manual

Customizing the sys_WebImageFX Control
The parameters of the sys_WebImageFX control define the height and width of the display of the editor,
the path to configuration file (ImageEditConfig.xml) and other characteristics. You can customize
these parameters in the control definition (either the Display Control Properties for <field> dialog or in the
PSXParam child nodes of the PSXControlRef node). If you customize the configuration file for the
WebImageFX editor, update the SRC parameter of each instance of the sys_WebImageFX control to
point to the correct configuration file.

For guidance on customizing (and localizing) the WebImageFX editor, consult the WebImageFX
Developer's Reference Guide, at http://www.ektron.com/webimagefx.aspx.

Most customizations of the WebImageFX editor involve modifications to the configuration file
(ImageEditConfig.xml). Do not modify the default configuration file, which is located in the
Rhythmyxroot/sys_resources/WebImageFX directory. Instead, customize shared or local definition
files. If you only use one customized configuration file, best practice is to use a shared configuration file.

In the default ImageEditConfig.xml used in Rhythmyx, the upload and exit options are disabled because
these actions cannot function in Rhythmyx; do not enable these options when you edit copies of the
ImageEditConfig.xml file.

Several instances of the control can use the same configuration XML file (shared configuration file), or
you can use a local configuration file for each instance of the editor; you can also use a shared
configuration file for some instances and a local configuration file for other instances. The files must be
stored in the following manner:

 The default configuration file is initially stored in the directories
sys_resources/WebImageFX rx_resources/WebImageFX. Do not modify the
configuration file in the directory sys_resources/WebImageFX.

 Shared configuration files should be stored in a directory with the path
rx_resources/[path]/WebImageFX, where [path] is the path to a subdirectory that
logically categorizes the file. For example, you might want to use the name of your project as
part of the path; for a project with the name sample, the path would be
rx_resources/sample/WebImageFX.

 Local configuration files should be stored in a subdirectory of the Content Editor application.
For example, if you have a local configuration file for a Press Release content editor, the
configuration file would be stored in the subdirectory
Rhythmyxroot/pressrelease/WebImageFX.

To define an instance of the sys_WebImageFX control to use a customized configuration file:

1 Open the Content Editor in the Rhythmyx Workbench and access the Content Editor
Properties dialog.

2 Select the field that uses the WebImageFX editor and click [Edit] to open the Field Properties
dialog.

3 Click the browse button (…) next to the Control field.

Rhythmyx displays the Display Control Properties for <field> dialog.

4 Click in the Param name column and choose config_src_url.

5 Click in the Value column of the same row and enter the relative URL of the configuration file
you want to use for this instance of the control as a literal value.

http://www.ektron.com/webimagefx.aspx

 Chapter 2 Content Reference 45

6 On the Display Control Properties for <field> dialog, click [OK].

7 On the Field Properties dialog, click [OK].

8 On the Content Editor Properties dialog, click [OK].
The changes will take effect the next time you start your application. To see your changes, stop and
restart the application, log in to Rhythmyx, and activate the editor.

Best Practices: sys_WebImageFX
To simplify maintenance and promote effective technical support, observe the following Best Practices
when working with the WebImageFX editor and the sys_WebImageFX control:

 Keep shared configuration files (configuration files used by more than one instance of the
control) in directories with the name Rhythmyxroot/rx_resources/[path]/webimagefx,
where [path] defines a category (such as a the name of a project or customer). For example,
if you are working on a project named sample, the directory should be
Rhythmyxroot/rx_resources/sample/webimagefx.

 If only one editor is going to use a configuration file, store the file in a subdirectory of the
editor application directory. If you decide to use this configuration file for other editors, move
it to a shared directory and update the SRC parameters of the instances of the control that use
that configuration file.

 When disabling a command or parameters of a command (such as lists of fonts or font sizes),
hide the disabled elements first by commenting them out (<!-- text --!>), then test and refine
your development. Remove the disabled commands and parameters when testing is complete
to minimize clutter in the files and simplify future modification.

Standard Rhythmyx Controls
Several standard controls are provided with Rhythmyx.

Each control has a name and a dimension. The dimension describes the form of the data expected by the
control. Options are

Value Description

single Data is zero or one value.

array Data is a sequence of 0 or more values.

table Data is a table of values.
Each control can take a series of parameters. Each parameter included has a name, a data type and a
parameter type. The data type defines the type of data expected for the parameter. Options include String,
Date, Datetime, and Number.

The parameter type can take one of three values: generic, img, and jscript. The parameter type is used
with the parametersToAttributes template. This template copies parameters into the HTML. The defaults
specified in the control metadata are used except where the content editor XML definition file overrides
the defaults. Only parameters that are listed in the control meta are copied. Multiple parameter types are
available because a control may need to configure more than one HTML tag.

46 Rhythmyx Technical Reference Manual

The description of the parameter describes the use of the parameter. A parameter may or may not include
a default value.

sys_CalendarSimple

Figure 5: sys_CalendarSimple control

The sys_CalendarSimple control is a combination of an editbox and a button (calendar icon). When a
user clicks the calendar icon, Rhythmyx displays a popup calendar control they can use to select a date.
 Each date field has its own control. The dimension is single.

The text field allows for manual entry of a date. Data entered into this field must conform to standard date
patterns.

 "yyyy-MMMM-dd 'at' hh:mm:ss aaa",
 "yyyy-MMMM-dd HH:mm:ss",
 "yyyy.MMMM.dd 'at' hh:mm:ss aaa",
 "yyyy.MMMM.dd HH:mm:ss",
 "yyyyMMdd HH:mm:ss",
 "yyyy.MMMM.dd 'at' hh:mm aaa",
 "yyyy-MM-dd G 'at' HH:mm:ss",
 "yyyy-MM-dd HH:mm:ss.SSS",
 "yyyy-MM-dd HH:mm:ss",
 "yyyy.MM.dd G 'at' HH:mm:ss",
 "yyyy.MM.dd HH:mm:ss.SSS",
 "yyyy.MM.dd HH:mm:ss",
 "yyyy/MM/dd G 'at' HH:mm:ss",
 "yyyy/MM/dd HH:mm:ss.SSS",

 "yyyy/MM/dd HH:mm:ss",
 "yyyy/MM/dd HH:mm",
 "yyyy-MM-dd",
 "yyyy.MM.dd",
 "yyyy/MM/dd",
 "yyyy-MMMM-dd",
 "yyyy.MMMM.dd",
 "EEE, d MMM yyyy HH:mm:ss",
 "EEEE, MMM d, yyyy",
 "MMM d, yyyy",
 "MMM yyyy",
 "yyyy",
 "HH:mm:ss",
 "HH:mm"

If these patterns are not matched, we try Java's default for the locale of the server to match the date.
Patterns not matched result in a error. Rhythmyx uses the SimpleDateFormat
(http://java.sun.com/j2se/1.3/docs/api/java/text/SimpleDateFormat.html) class to format and parse dates.

Parameter Data Type Parameter
Type

Description Default

id String Generic XHTML 1.0 attribute
applied input tag

None

class String Generic XHTML 1.0 attribute
applied input tag

None

style String Generic XHTML 1.0 attribute
applied input tag

None

tabindex Number Generic XHTML 1.0 attribute
applied input tag

None

 Chapter 2 Content Reference 47

Parameter Data Type Parameter
Type

Description Default

alt String Image Alt for the calendar
selector icon.

Calendar Pop-up

src String Image href for the calendar
selector icon

../rx_resources/images/cal.gif

height String Image Height of the calendar
selector icon

20

width String Image Width of the calendar
picker icon

20

formname String JavaScript Name of the form that
contains this control

EditForm

time String Generic Defines whether the
Calendar display
includes the time. If
the value is yes, the
time calendar displays
the time. If the value
is no, the calendar does
not display the time. If
the parameter has any
other value, it is treated
as though the value is
yes.

no

sys_CheckBoxGroup
The sys_CheckBoxGroup control displays a group of check boxes that give the end user the ability to
select multiple values at the same time. A checkbox group must be multidimensional, so the values for
the group should always be stored in a child table. The child table should consist of at least three columns:
one for contentid, one for revisionid and one for the value to be stored. You should only define the value
column in the field definition. The server will populate the contentid and revisionid fields automatically.
 The dimension is array.

Figure 6: Example sys_CheckBoxGroup

When implementing this control, add the child table to the list of tables for the content editor:
<PSXTableSet>
 <PSXTableLocator>

 </PSXTableLocator>
 <PSXTableRef name="RXBRIEF" alias="RXBRIEF"/>

48 Rhythmyx Technical Reference Manual

 <PSXTableRef name="CHECKTABLE" alias="CHECKTABLE" />
</PSXTableSet>

Parameters

Parameter Data Type Parameter
Type

Description Default

id String Generic XHTML 1.0 attribute None

class String Generic XHTML 1.0 attribute None

style String Generic XHTML 1.0 attribute None

columncount String Generic Defines the number of columns
in which the browser will
display the check boxes. If the
value of this parameter is 0 or 1,
the browser renders the
checkboxes in one column. If
the value of the parameter is
anything other than 0 or 1, the
browser renders the checkboxes
in the specified number of
columns.

1

columnwidth String Generic Specifies the width of the
column in pixels or percentage.

100%

sys_CheckBoxTree
This control renders a set of options as a "tree" of checkboxes that allows multiple boxes to be checked.
This control does not include any validation to control which options the user can and cannot check.

Figure 7: sys_CheckBoxTree control

The control is rendered using two XML files. The first file defines the structure of the tree and defines the
choices. The following code illustrates a simple example of the "tree" XML:

<tree label="products">

 Chapter 2 Content Reference 49

 <node id="s1" label="generic products" selectable="no">
 <node id="prodx" label="product x" selectable="yes"/>
 <node id="prody" label="product y" selectable="yes"/>
 </node>
 <node id="s2" label="special products" selectable="no">
 <node id="s2a" label="extra special products" selectable="yes">
 <node id="prodq" label="product q" selectable="yes"/>
 </node>
 <node id="prodz" label="product z" selectable="yes"/>
 </node>
</tree>

The <node> element has three attributes:

 id (required): specifies the value that will be stored in the Repository if the checkbox is
checked.

 label (required): specifies the value that will be displayed when the Content Editor is
rendered.

 selectable (optional): indicates whether the specified node can be checked or selected.
The default value of "no" indicates that the node cannot be selected; a value of "yes" specifies
that the node can be selected.

The second XML file is a dynamically-generated lookup used to support Content Editor validation. This
file has the same structure as the "tree" XML. The value of the id attributes of the <node> elements must
match. If these values do not match, validation will fail for nodes that do not match and no value will be
saved for those nodes. The lookup file can be generated either from a keyword or dynamically using an
internal lookup. For details on creating keywords, see "Creating Keywords" in the Rhythmyx Workbench
Help. For details on creating an internal lookup, see Creating an Internal Lookup Query (on page 68).

Parameters

Parameter Data Type Parameter Type Description Default

width String XHTML 1.0
attribute

Specifies the width of
the control, in either
pixels or a percentage of
available horizontal
space.

400 (pixels)

height String XHTML 1.0
attribute

Specifies the height of
the control, in either
pixels or a percentage of
available vertical space.

300 (pixels)

tree_src_url String XHTML 1.0
attribute

Specifies the relative
location of the xml that
defines the tree.

../rx_resources/treedef.xml

formname String XHTML 1.0
attribute

Internal parameter. Do
not modify.

EditForm

50 Rhythmyx Technical Reference Manual

sys_DropDownMultiple
The sys_DropDownMultiple is a combo box control that allows users to select multiple options from the
list of potential values. Hold the <CTRL> key while clicking on values to select multiple values; hold the
<SHIFT> key while selecting values to select the range between the selected values.

Figure 8: sys_DropDownMultiple control

Parameters

Parameter Data Type Parameter Type Description Default

id String Generic XHTML 1.0 attribute None

class String Generic XHTML 1.0 attribute None

style String Generic XHTML 1.0 attribute None

size Number Generic XHTML 1.0 attribute None

multiple String Generic XHTML 1.0 attribute None

tabindex Number Generic XHTML 1.0 attribute None

disabled String Generic XHTML 1.0 attribute None

sys_DropDownSingle
The sys_DropDownSingle is a basic drop down HTML control. When a user clicks on the control,
Rhythmyx displays a list of potential values for the field. The user can select one of these values to
populate the field. The dimension is single.

Figure 9: Example sys_DropDownSingle

Parameters

Parameter Data Type Parameter Type Description Default

id String Generic XHTML 1.0 attribute None

class String Generic XHTML 1.0 attribute None

style String Generic XHTML 1.0 attribute None

size Number Generic XHTML 1.0 attribute None

multiple String Generic XHTML 1.0 attribute None

tabindex Number Generic XHTML 1.0 attribute None

disabled String Generic XHTML 1.0 attribute None

 Chapter 2 Content Reference 51

sys_EditBox
The sys_EditBox control is used to input data in a standard one-line edit box. This control corresponds to
a single, one-dimensional field. The dimension is single.

Figure 10: Example sys_EditBox

Parameters

Parameter Data Type Parameter Type Description Default

id String Generic XHTML 1.0
attribute

None

class String Generic XHTML 1.0
attribute

None

style String Generic XHTML 1.0
attribute

None

size String Generic XHTML 1.0
attribute

50

maxlength Number Generic XHTML 1.0
attribute

None

tabindex Number Generic XHTML 1.0
attribute

None

EditLive for Java Editor
Ephox’s EditLive for Java (ELJ) HTML editor is now the default HTML editor for Rhythmyx content
editors.

Figure 11: sys_EditLive Cotnrol

52 Rhythmyx Technical Reference Manual

Customers who are upgrading and have previously used the sys_eWebEditPro control may continue to use
it as a deprecated feature.

Note that you must be running JRE Version 1.4.207 or higher to run the sys_EditLive control (JRE
Version 1.4.207 or higher is required for Rhythmyx Version 5.7).

An XML configuration file (elj_config.xml) drives the functionality of
the<Rhythmyxroot>/rx_resources/ephox and <Rhythmyxroot>/sys_resources/ephox. Only customize the
file in <Rhythmyxroot>/rx_resources/ephox. On upgrade, Rhythmyx overwrites the file in
<Rhythmyxroot>/sys_resources/ephox. To take advantage of any upgrades, you must copy the
elj_config.xml file in sys_resources/ephox to rx_resources/ephox (or copy the changed portions of the file
to your file in the rx_resources/ephox folder). You may create multiple custom files, but when your
control runs, it can only reference one of them.

Rhythmyx installs the default configuration file to both <Rhythmyxroot>/rx_resources/ephox and
<Rhythmyxroot>/sys_resources/ephox. Percussion Software will provide instructions for modifying the
installation in sys_resources/ephox to take advantage of upgrades to the ELJ editor.

sys_EditLive Control
sys_EditLive is a multiple-line text entry control in which the user can type and edit text. It displays a
DHTML editor that allows a user to enter text and apply standard formatting, such as changing the font or
the alignment.

When more than one sys_EditLive controls are used in a Content Type, only one field in the content editor
can access the control at a time. When a user accesses the control for one field, the control closes in the
last field that displayed it.

The following graphic shows how the control works. When a user clicks the placeholder box for a field,
the control is visible, and the user can enter data. When the placeholder box is not clicked for a field, the
box displays the field's formatted text and graphics but they cannot be edited.

Figure 12: sys_EditLive control

 Chapter 2 Content Reference 53

sys_EditLive also includes a feature that allows users to copy content from a Microsoft Word file and
paste it into sys_EditLive. The appearance of the content remains the same and sys_EditLive generates the
corresponding HTML markup.

The default Rhythmyx installation of this editor includes built-in support for inserting inline links and
images in addition to the standard features of the ELJ editor. (For details about the standard features and

Rhythmyx features of ELJ, click the help button in the control). This control works with all browsers
that Rhythmyx supports.

Parameters

Each sys_EditLive control includes the following parameters. The default values are set in the file
<Rhythmyx root>/sys_resources/stylesheets/sys_templates.xsl.

Parameter Data
Type

Parameter
Type

Description Default

Width String Generic This parameter
specifies the width of
the inline frame. This
parameter may be
either a pixel or a
percentage of the
available horizontal.

760

Height String Generic This parameter
specifies the height of
the inline frame. This
parameter may be
either a pixel or a
percentage of the
available vertical.

250

config_src_url String Generic This parameter
specifies the location of
the config.xml that the
control will use for
configuration.

../rx_resources/ephox/elj_config.xml

config_download String Generic This parameter
specifies the location of
the download directory.

../rx_resources/ephox/editlivejava

InlineLinkSlot String Generic This parameter
specifies the id of
inline link slot. The
search dialog for the
inline link slot shows
the content types that
have a variant
associated with the slot.

103

54 Rhythmyx Technical Reference Manual

Parameter Data
Type

Parameter
Type

Description Default

InlineImageSlot String Generic This parameter
specifies the id of
inline image slot. The
search dialog for the
inline image slot shows
the content types that
have a variant
associated with the slot.

104

InlineVariantSlot String Generic This parameter
specifies the id of
inline Template slot.
The search dialog for
the inline Template slot
shows the content types
that have a Template
associated with the
inline Template slot.

105

DebugLevel String Generic This parameter
specifies the debug
level for the EditLive
Applet. The allowed
levels are (fatal, error,
warn, info, debug, http)

info

You can change the values of sys_EditLive parameters for any individual Content Type field.

To change the value of a sys_EditLive parameter for a Content Type field:

1 In the Rhythmyx Workbench, open the Content Type editor for the Content Type containing
the field.

2 In the field, double-click on sys_EditLive to display the browse button (…) next to it.

3 Click the browse button (…).

Rhythmyx displays the Control Properties dialog. Parameters that take their default values
from the sys_templates.xsl file are not shown in the Parameters table, so the default table is
empty.

 Chapter 2 Content Reference 55

Figure 13: Default Control Properties dialog for sys_EditLive

56 Rhythmyx Technical Reference Manual

4 Click in the Name column and choose the parameter whose value you want to change from the
drop list.

Figure 14: Changing a parameter value in the Control Properties dialog

 Chapter 2 Content Reference 57

5 Click in the Value column of the same row and enter the value you want to use for this
instance of the control.

Figure 15: Parameter value changed in Control Properties dialog

6 On the Control Properties dialog, click [OK].

7 Save the changes to the Content Type.

8 When you open the Content Editor in Content Explorer, the field should reflect the change
made to the parameter. Note: You may have to choose View > Refresh in Content Explorer
before seeing the change.

sys_EditLiveDynamic Control
Note: This control is deprecated. Customers who installed Rhythmyx prior to Version 6.5.2 may have
fields that use it.

The sys_EditLiveDynamic control functions identically to the sys_EditLive control, except it offers fewer
features. Originally, it was intended for Content Editors that experienced slow load times because they
used multiple EditLive editors, but now the sys_EditLive control offers the same faster load time.
Therefore, the sys_EditLiveDynamic control is now deprecated.

You can mix the two controls within one Content Editor. Some fields can use sys_EditLive and others can
use sys_EditLiveDynamic.

The sys_EditLiveDynamic control includes the same parameters as those in the sys_EditLive control (see
page 52). The default values, which are the same as those for sys_EditLive, are set in the file <Rhythmyx
root>/sys_resources/stylesheets/sys_templates.xsl.

58 Rhythmyx Technical Reference Manual

To change parameters for a Content Editor field that uses the sys_EditLiveDynamic control, we
recommend first changing the control to the sys_EditLive control in the Rhythmyx Workbench and then
following the instructions for changing any of the parameters in a sys_EditLive control (see
"sys_EditLive Control" on page 52).

Adding the sys_EditLive Control to a Content Editor
To add the sys_EditLive control (see page 52) to a content editor, select sys_EditLive as the Control Name
for the field for which you want to use the ELJ editor. No additional implementation is required.
Rhythmyx automatically adds the sys_xdTextCleanup exit as a dependency of the control, and
automatically configures its required parameters.

Adding Form and Script Support to a sys_EditLive Control
If the field you plan to maintain using the sys_EditLive control will include form or script tags, you must
add special processing to the control.

 Add the sys_EditLiveFormDecode Input Translation extension. The value of the Field name
parameter should be PSXSingleHtmlParameter/fieldname, where fieldname is the name of the
field to which the control is assigned.

 Add the sys_EditLiveFormEncode Output Translation extension. The value of the Field name
parameter should be PSXSingleHtmlParameter/fieldname, where fieldname is the name of the
field to which the control is assigned.

Best Practices: sys_EditLive
To simplify maintenance and promote effective technical support, observe the following Best Practices
when working with the ELJ editor and the sys_EditLive control:

 Keep shared configuration files (configuration files used by more than one instance of the
control) in directories with the name Rhythmyxroot/rx_resources/[path]/ephox,
where [path] defines a category (such as a the name of a project or customer). For example,
if you are working on a project named sample, the directory should be
Rhythmyxroot/rx_resources/sample/ephox.

 If only one editor is going to use a configuration file, store it in
Rhythmyxroot/rx_resources/ephox or a subdirectory created under this directory.
For example, if you have a local configuration file for a Press Release content editor, you
might want to store the configuration file in the subdirectory
Rhythmyxroot/rx_resources/ephox/pressrelease.

If you decide to use this configuration file for other editors, move it to a shared directory and
update the config_src_url parameters of the instances of the control that use that
configuration file.

 When disabling a command or parameters of a command (such as lists of fonts or font sizes),
hide the disabled elements first by commenting them out (<!-- text --!>), then test and
refine your development. Remove the disabled commands and parameters when testing is
complete to minimize clutter in the files and simplify future modification.

 Chapter 2 Content Reference 59

Upgrading from sys_eWebEditPro to sys_EditLive
If you upgrade from Rhythmyx 5.x to Rhythmyx 6.0 or higher, you receive the sys_EditLive control in
addition to the sys_eWebEditPro control. Both options appear in the Control drop list in the Content Type
Editor.

Content Editors fields that already use the sys_eWebEditPro control will continue to use it unless you
change them manually. When you change the control from sys_eWebEditPro to sys_EditLive,
sys_EditLive automatically adopts the field’s sys_eWebEditPro values for the following parameters (by
default, these parameters have the same values in sys_EditLive and sys_eWebEditPro):

 width
 height
 inlineLinkSlot
 inlineImageSlot
 inlineWidthSlot

For more information about the parameters, see sys_EditLive Control (on page 52).

To manually replace eWebEditPro with ELJ in a Content Type:

1 In the Rhythmyx Workbench, open the editor for the Content Type that you want to change.

In the row for the Content Type field whose control you want to change, double-click in the
control field to access the drop-list.

2 Click the drop list and choose sys_EditLive.

Rhythmyx automatically sets common parameters to the same values used for the
sys_eWebEditPro control that was used for the field.

3 If you want to use a customized configuration file, or modify other parameters:

c) Click the browse button next to the Control field.

Rhythmyx displays the Control Properties dialog.

d) Enter the parameters and associated values you want to assign to the control.

e) Click [OK] to save your edits.

4 Save the changes to the Content Type.

To see your changes, log into Rhythmyx, and activate the editor.

60 Rhythmyx Technical Reference Manual

NOTE:
You cannot mix use of the sys_eWebEditPro and sys_EditLive controls in a single Content Editor. If you
mix them, when you attempt to save the Content Editor, the following error dialog appears:

Figure 16: Warning when mixing controls

Click [OK], and change the fields to use the same controls.

sys_File
The sys_File control is a file upload element that allows the user to supply a file as the input. This control
corresponds to a single, one-dimensional field.

When you add a sys_file control to a field in a content editor, Rhythmyx adds sys_FileInfo (on page 238)
as a dependency of the Content Editor for you automatically. The sys_FileInfo exit searches for attached
files in a content item’s HTML and returns values for file name, MIME type, character length and file
encoding. The exit returns the values to field names formed by combining the filename (the <FieldRef>
value) with descriptive suffixes.

In order for the sys_File control to correctly upload a file to a content editor field, it must have access to
the file's extension and mime type. The sys_FileInfo (on page 238) exit automatically extracts this
information and stores it in fields that you have created in the content editor. To enable the sys_File
control to use these fields, you must name them with the proper syntax. See sys_FileInfo (on page 238)
for information about naming these fields.

sys_File control Parameters

Parameter Data Type Parameter
Type

Description Default

id String Generic XHTML 1.0
attribute

None

class String Generic XHTML 1.0
attribute

None

 Chapter 2 Content Reference 61

Parameter Data Type Parameter
Type

Description Default

style String Generic XHTML 1.0
attribute

None

size String Generic XHTML 1.0
attribute

50

maxlength Number Generic XHTML 1.0
attribute

None

 tabindex Number Generic XHTML 1.0
attribute

None

Controlling Processing of XML files
When uploading XML files, you have the option of specifying that the server process them normally
(checking that the document is well-formed and that it conforms to a DTD), that it performs no validation
(only checking that the document is well-formed), or that it treats the file as text. The psxmldoc HTML
parameter controls this processing.

To use the psxmldoc parameter, include a hidden field to store the psxmldoc parameter (typically the
field is named "psxmldoc"), which is stored in a backend column (also typically called "PSXMLDOC").
 This field must occur before the field where the file is stored.

The psxmldoc parameter is typically mapped to a literal value. Acceptable values are:

Value Processing

useValidating (default) Server validates the document according to the
DTD specified in the document.

useNonValidating Sever confirms that the document is well-
formed, but does not validate it against a DTD.

treatAsText Server does not parse the document.
 Document can be mapped as a single
parameter to a CLOB or text column.

If the MIME type of the request is text/xml or application/xml, the body content must be an
XML document. In this case, if the parameter value is treatAsText, the server ignores it and uses the
default value. If the request MIME type is multipart/form-data, the parameter can store multiple
values, each separated by a semicolon (";"). Only one of these values can specify parsing; the remaining
values must be treatAsText. If multiple parser values are specified, only the last is used.

62 Rhythmyx Technical Reference Manual

sys_HiddenInput
Rhythmyx does not display a field that uses the sys_HiddenInput control to the user, but it does include
the content of the field with the data submitted to the database. The value in the field can be set to a literal
value defined by the control itself, or a UDF or exit might populate it. Use this control to store
information that the system needs, but is unnecessary for the user to see, such as a file extension. The
dimension is single.

Parameters

Parameter Data Type Parameter
Type

Description Default

id String Generic XHTML 1.0
attribute

None

class String Generic XHTML 1.0
attribute

None

style String Generic XHTML 1.0
attribute

None

sys_RadioButtons
The sys_RadioButtons control displays a set of radio buttons that allow the user to select one of a set of
values. A set of radio buttons must be multidimensional, so the values for the group should always be
stored in a child table. The child table should consist of at least three columns: one for contentid, one for
revisionid and one for the value to be stored. You should only define the value column in the field
definition. The server will populate the contentid and revisionid fields automatically. The dimension is
array.

Parameters

Parameter Data Type Parameter
Type

Description Default

Class String Generic This parameter assigns a class name or set
of class names to an element. Any
number of elements may be assigned the
same class name or names. Multiple class
names must be separated by white space
characters.

datadisplay

Style String Generic This parameter specifies style information
for the current element. The syntax of the
value of the style attribute is determined
by the default style sheet language.

None

Tabindex Number Generic This parameter specifies the position of
the current element in the tabbing order
for the current document. This value must
be a number between 0 and 32767.

None

 Chapter 2 Content Reference 63

Parameter Data Type Parameter
Type

Description Default

Disabled String Generic If set, this boolean attribute disables the
control for user input.

None

sys_SingleCheckBox
A single checkbox, used to denote boolean (true/false) values.

Figure 17: sys_SingleCheckBox control

Parameters

Parameter Data Type Parameter
Type

Description Default

id String Generic XHTML 1.0 attribute None

class String Generic XHTML 1.0 attribute None

style String Generic XHTML 1.0 attribute None

sys_Table

Figure 18: Example sys_Table

The sys_Table control creates a table to display multiple fields from a related database table. It is
multidimensional and may contain multiple fields. The graphic shows a table with three text fields and one
file upload control. Because this is a complex child, the user edits data on a different page, which they
access by clicking a button labeled 'Edit table' on the page. The content editor displays a summary view of
all rows in the table. The showInSummary attribute of each child element within the table controls the
visibility of these values. Note that the PSXFieldSet has a name, and each PSXField has its own name.
 The dimension is table.

Parameters

Parameter Data Type Parameter Type Description Default

id String Generic XHTML 1.0 attribute None

class String Generic XHTML 1.0 attribute None

style String Generic XHTML 1.0 attribute None

64 Rhythmyx Technical Reference Manual

Parameter Data Type Parameter Type Description Default

summary String Generic XHTML 1.0 attribute None

width String Generic XHTML 1.0 attribute width 100%

cellspacing String Generic XHTML 1.0 attribute
cellspacing

0

cellpadding String Generic XHTML 1.0 attribute
cellpadding

5

border Number Generic XHTML 1.0 attribute tabindex 1

sys_TextArea
The sys_TextArea control is used to give the user the ability to enter multiple lines of plain text. The
dimension of this control is single.

Figure 19: Example sys_TextArea

Parameters

Parameter Data Type Parameter
Type

Description Default

id String Generic XHTML 1.0
Attribute

None

class String Generic XHTML 1.0
Attribute

None

style String Generic XHTML 1.0
Attribute

None

rows Number Generic XHTML 1.0
Attribute

4

cols Number Generic XHTML 1.0
Attribute

80

tabindex Number Generic XHTML 1.0
Attribute

None

sys_WebImageFX and the WebImageFX Editor
Your Rhythmyx license may include Ektron's WebImageFX graphics editor which includes a variety of
tools for creating and editing graphics files. With the WebImageFX editor, Rhythmyx includes the
WebImageFX control. The control uploads a graphics file and displays it in a Content Editor using the
WebImageFX editor.

 Chapter 2 Content Reference 65

An XML configuration file (ImageEditConfig.xml) defines the WebImageFX controls and styles available
to the end user. You can customize this configuration file to add new functionality or to remove existing
functionality. By default, the WebImageFX editor lets you upload, create, or paste (from Windows
clipboard) images to edit in its window.

During installation, Rhythmyx installs a copy of WebImageFX to
Rhythmyxroot/sys_resources/webimagefx and checks the version of WebImageFX in
Rhythmyxroot/rx_resources/webimagefx. If the version in rx_resources is earlier than the
current version (or there is no version file), Rhythmyx backs up the copy of WebImageFX in rx_resources
(by adding a time stamp to the directory name, for example, webimagefx__0301_1538, and installs the
current version into it.

The following Content Editor uses the sys_WebImageFX control to upload and display images.

Figure 20: Content Editor with sys_WebImageFX control

sys_WebImageFX Control
The sys_WebImageFX control functions almost identically to the sys_File control (see "sys_File" on page
60). It includes most of the same properties as the sys_File control, and like the sys_file control, it is a file
upload element that allows the user to supply a file as the input, and it corresponds to a single, one-
dimensional field. The main difference between the sys_WebImageFX control and the sys_File control is
that the sys_WebImageFX control appears in a Content Editor with the WebImageFX image editor.

When you add a field that uses a sys_WebImageFX control to a Content Type, Rhythmyx adds the
sys_FileInfo exit as a dependency for you automatically. The sys_FileInfo exit searches for attached files
in a content item’s HTML and returns values for file name, MIME type, character length and file
encoding. The exit returns the values to field names formed by combining the filename (the <FieldRef>
value) with descriptive suffixes.

66 Rhythmyx Technical Reference Manual

In order for the sys_WebImageFX control to correctly upload a file to a content editor field, the field that
holds the file must be named uploadfilephoto, and the control must have access to the file's mime type and
filename. The sys_FileInfo (on page 238) exit automatically extracts this information and stores it in
fields that you have created in the content editor. To enable the sys_File control to use these fields, you
must name them with the proper syntax. See sys_FileInfo (on page 238) for information about naming
these fields.

The sys_WebImageFX control displays a WebImageFX editor that allows a user to not only upload an
image, but also to create or modify an image. For details about the standard features of WebImageFX, see
the developer’s guide.

Parameters:

Parameter Data
Type

Parameter
Type

Description Default

id String Generic This parameter assigns a name
to an element. This name must
be unique in a document.

None

class String Generic This parameter assigns a class
name or set of class names to
an element. Any number of
elements may be assigned the
same class name or names.
Multiple class names must be
separated by white space
characters.

datadisplay

style String Generic This parameter specifies style
information for the current
element. The syntax of the
value of the style attribute is
determined by the default style
sheet language.

None

width Number Generic This parameter tells the user
agent the initial width of the
control. The width is given in
pixels.

800

height Number Generic This parameter tells the user
agent the initial width of the
control. The width is given in
pixels.

400

config_src_url String Generic This parameter specifies the
location of the config.xml that
will the control will use for
configuration.

../sys_resources/
webimagefx/
ImageEditConfig.xml

cleartext String custom This parameter determines the
text that will be displayed
along with a checkbox when
the field supports being
cleared.

Clear

 Chapter 2 Content Reference 67

Adding the sys_WebImageFX Control to a Content Editor
To create a Content Editor that uses WebImageFX:

1 Follow the procedure in the document Rhythmyx Implementation Guide for creating a new
Content Editor.

2 Include a field with the Field Name uploadfilephoto and the Control Name sys_WebImageFX.

3 When you choose sys_WebImageFX as the Control Name, Rhythmyx automatically includes
the sys_FileInfo exit, which fills in the uploaded file’s name, mime type, extension, and size
into the proper Content Editor fields if you provide them. Add the following fields for storing
the filename and mime type. You must use the exact names specified.

 uploadfilephoto_filename

 uploadfilephoto_type

For each of these fields, do the following:

a) Click [All Properties].

The Field Properties dialog opens.

b) Click [Read Only].

The Field Editability dialog opens.

c) In Rule Type, choose Always.

d) Click [Add].

The rule is added to the Rules Table.

e) Click [OK].

The Field Editability dialog closes.

f) Click [OK].

The Field Properties dialog closes.

4 In Mime type mode, choose From Mime Type Field.

5 In Mime type value, choose uploadfilephoto_type.

6 Add any of the other fields that sys_FileInfo extracts to the Content Editor. Always use the
prefix uploadfilephoto. See sys_FileInfo (on page 238) for other required naming conventions
for these fields.

7 Complete the standard procedure for creating the Content Editor.

68 Rhythmyx Technical Reference Manual

The following limitations apply to all Content Types that use this control:

 The name of the field containing the sys_WebImageFX control must be uploadfilephoto.
 Because the name of a field containing the sys_WebImageFX control must be

uploadfilephoto, a Content Type cannot have more than one sys_WebImageFX control. If it
does, the additional controls will not be able to upload images.

 The names of fields in the Content Type that sys_FileInfo updates (filename, type, size, and
extension) must be prefixed with uploadfilephoto. For example, uploadfilephoto_filename,
uploadfilephoto_type, uploadfilephoto_size, uploadfilephoto_ext. A Content Editor that
contains a sys_WebImageFX control cannot also contain a sys_File control; if it does the
sys_File control will not be able to upload a file.

NOTE: The first time you open a Content Editor that uses the sys_WebImageFX control in your Web
browser, a dialog will prompt you to install WebImageFX. Follow the installation instructions in the
dialog. After you initially install WebImageFX, you will not have to install it again.

Creating an Internal Lookup Query
When you use the sys_DropDownSingle, sys_CheckBoxGroup, and sys_RadioButtons controls, or any
custom controls that require a list of entries, you may choose to derive the choices for the control from an
existing Rhythmyx table using a query. You should create a separate Rhythmyx application for these
internal lookup queries.

To create an internal lookup query:

1 In the Rhythmyx Workbench, go to the XML Server view and create a new application. For
details about creating a new application, see the topic "Creating a New Application" in the
Rhythmyx Workbench Help.

2 Drag the Rhythmyx/DTD/sys_Lookup.dtd file onto the application.

3 From the popup menu, choose Query.

4 Right-click on the sys_Lookup XML and select Properties to open the Resource Editor.

5 Add the table(s) containing the content that you want as list values.

6 Open the mapper and map table values to the sys_Lookup Value and PSXDisplayText
elements.

7 Optionally, add a Result Pager to sort the list results.

8 Right-click the sys_Lookup XML resource and choose Request Properties.

9 Change the name of the sys_Lookup.XML resource to the custom name you want to use to a
and click [OK].

10 Save and close the application.

 Chapter 2 Content Reference 69

11 Go to the Content view and open the Content Type where you want to use this lookup.

12 Open the Control Properties dialog and on the Choices tab, specify the lookup resource you
just created.

13 Click the [OK] button to close the Control Properties dialog.

14 Save the Content Type.

70 Rhythmyx Technical Reference Manual

Content Editor System Definition Reference
The following table describes the fields defined in the Content Editor System Definition that are eligible
to be included in Content Editors. By default, all of these fields are defined with the following property
values:

Treat data as binary: No

Show in Preview: Yes

Allow this field to be searched: Yes

Name Label Mandatory Comments

sys_communityid Community Id Yes Defined when the Content Item is
created and never modified afterwards.

By default, value is derived from the
currently logged Community of the
user that creates the Content Item.

Hidden by default.

If visible, options include all
Communities defined in the system.

sys_contentexpirydate Content expiration date No

sys_contentstartdate Content start date Yes Date format is yyyy-MM-dd

sys_currentview (None) Yes Hidden Input.

sys_hibernateVersion (None) Yes Hidden Input. Field only used
internally, but must be included on all
Content Editors.

sys_lang Locale ID Yes Defined when the Content Item is
created and never modified afterwards.

By default, value is derived from the
currently logged Locale of the user that
creates the Content Item.

Hidden by default.

If visible, options include all Locales
defined in the system.

sys_pathname Path name No

sys_pubdate Publication date No

sys_reminderdate Reminder date No

sys_suffix Suffix No Defaults to ".html".

Hidden by default.

sys_title System title Yes This field cannot be empty and must be
unique within the folder.

 Chapter 2 Content Reference 71

Name Label Mandatory Comments

sys_workflowid Workflow Yes Hidden by default.

The next table describes fields defined in the Content Editor System Definition that are not eligible to be
included in Content Editors. These fields are used mostly for processing of Content Items or to provide
human-readable information for ID fields defined in the system definition. The value of some of these
fields is computed at runtime. Those fields are not eligible to be searched, but, like all fields in the system
definition, can be included in Display Formats.

Name Label Searchable Comments

sys_assignees Assignees No Computed.

sys_assignmenttype Assignment type No Computed.

Valid values include:

 None
 Reader
 Assignee
 Admin

sys_assignmenttypeid Assignment type ID No Computed.

sys_checkoutstatus Checkout status No Computed.

sys_communityname Community Name Yes

sys_contentcreatedby Created by Yes Defined when the Content Item is
created and never modified
afterwards

sys_contentcreateddate Created on Yes Defined when the Content Item is
created and never modified
afterwards.

sys_contentcheckoutusername Checked out user
name

Yes

sys_contentid Content id Yes Defined when the Content Item is
created and never modified
afterwards.

sys_contentlastmodifieddate Last modified date Yes

sys_contentlastmodifier Last modified by Yes

sys_contentstateid Workflow State ID Yes

sys_contenttypeid Content Type Yes Defined when the Content Item is
created and never modified
afterwards.

sys_contenttypename Content Type Name Yes

sys_folderid Folder Path Yes

sys_localename Locale Name Yes

72 Rhythmyx Technical Reference Manual

Name Label Searchable Comments

sys_objecttype Object type No Defined when the Content Item is
created and never modified
afterwards.

sys_publishabletype Publishable status No Computed

sys_relevancy Rank Yes This field is used to provide the
relevancy ranking returned by the
external search engine. The field
value is overwritten by the search
engine at the time the search
results are processed. If no rank is
available, or if the search was
performed against the internal
engine, the value is left at -1.

sys_siteid Site Yes

sys_statename Workflow State Name Yes

sys_thumbnail Thumbnail Yes

sys_variantid Variant Yes

sys_variantname Variant Name Yes

sys_workflowname Workflow Name Yes

 Chapter 2 Content Reference 73

Search Reference
This section explains what search indexing (see page 73) is, and how Rhythmyx performs indexing, as
well as defining some of the specialized plugins that Rhythmyx uses to index search terms.

Rhythmyx uses text extractors and text analyzers to perform search engine indexing. This section explains
the purpose of each type of java plugin, describes what Rhythmyx provides out of the box, and discusses
how administrators can override the out of the box plugins.

 Text Extractors (see below)
 Text Analyzers (see page 74)

Search Indexing
Search indexing in Rhythmyx is the process of extracting text from fields in content items, parsing the text
for search terms, and storing the search terms in files. Search indexing occurs when a content item is
created or when an administrator enters a console command to perform indexing.

The process of indexing involves a text extractor copying strings of text from content fields and a text
analyzer parsing the text to find words and phrases that Rhythmyx stores as search terms.

Text Extractors
A text extractor runs when Rhythmyx indexes content items for searching. Rhythmyx first identifies each
field's mime type, and then chooses the text extractor associated with that mime type.

Out of the box text extractors support the Mime types in the following table. The table lists the file types
or text formats associated with the supported Mime types.

Format or File Type Mime Types

HTML text/html

Microsoft Excel application/vnd.ms-excel

application/vnd.ms-excel.sheet.macroEnabled.12

application/vnd.openxmlformats-officedocument.spreadsheetml.sheet

Microsoft Power Point application/mspowerpoint

application/vnd.ms-powerpoint.presentation.macroEnabled.12

application/vnd.openxmlformats-officedocument.presentationml.presentation

Microsoft Word application/msword

application/vnd.ms-word.document.macroEnabled.12

application/vnd.openxmlformats-officedocument.wordprocessingml.document

PDF application/pdf

Plain Text text/plain

74 Rhythmyx Technical Reference Manual

Format or File Type Mime Types

RTF application/rtf

application/x-rtf

text/richtext

XML text/xml

Administrators can write custom text extractors using the IPSLuceneTextConverter interface (see the
JavaDoc for help). Custom text extractors override out-of-the-box text extractors for the mime types that
the administrator specifies when adding them to the Server Administrator's Full-Text Search tab. For more
information, see the topic How to Override the Default Text Extractor in the Server Administrator online
help.

Text Analyzers
A text analyzer runs after text is extracted from content items. The text analyzer parses the extracted text
strings into search terms for indexing.

Rhythmyx determines which text analyzer to use by determining the language of the text from the content
item's Locale and choosing the text analyzer associated with that language.

Out of the box text analyzers support the following languages:

 English
 French
 German
 Italian
 Portuguese

 Spanish
 Danish
 Dutch
 Finnish
 Norwegian

 Russian
 Swedish
 Chinese
 Japanese
 Korean

Administrators can write custom text analyzers using the IPSLuceneAnalyzer interface (see the JavaDoc
for help). A custom text analyzer can be associated with one or more Locales, and the administrator must
register it separately for each Locale in the Rhythmyx Server Administrator. Once registered with a
Locale, a custom text analyzer overrides the out-of-the-box text analyzer for that Locale. For more
information, see the topic How to Override the Default Text Analyzer in the Server Administrator online
help.

 75

C H A P T E R 3

Assembly Reference

The assembly process transforms the Content Items managed by the system into the published outputs:
page elements and pages. The assembly process is recursive, allowing any number of formatting and
merge transformations to take place before completing the final assembled output. The assembly process
can produce either a complete HTML page or partially-assembled page elements published to application
servers and databases.

The first section of this chapter outlines the logical architecture and processing of the Assembly engine.
The next section details how Rhythmyx uses the Velocity templating technology to produce text (i.e.,
HTML) outputs. A third section is reference to the extensions provided for assembly, while the fourth a
reference to the assembly API.

76 Rhythmyx Technical Reference Manual

Logical Architecture and Processing:
Assembly
This section is comprised of four subsections. This first details the logical architecture of the assembly
engine. A second section describes the assembly process for a specific Content Item. The recursive
nature of assembly is examined in the third part, while the final part describes how Managed Navigation is
assembled.

Logical Architecture: Assembly
The centerpiece of the assembly engine is the Assembly Service, which receives requests for assembled
output and produces a complete set of data for assembly. The actual assembly is performed by an
assembly plugin (see below for details).

The following graphic illustrates the logical architecture of the Assembly engine:

Figure 21: Logical architecture of the Assembly engine

 Chapter 3 Assembly Reference 77

The Assembly services rests on a utility layer composed of:

 The Content Manager
 JEXL (Java Expression Language; for additional details, see Java Expression Language

(JEXL) on page 132).
 Hibernate
 Spring
 Other Rhythmyx services

In general, the interface to the Assembly Service is the Assembly Servlet, which receives requests and
passes them to the Assembly Service for processing. The Assembly Servlet is the preferred interface, but
it is possible to access the Assembly Service directly if necessary.

The Assembly Service also interacts with the following extensions:

 Assembly plugins
Assembly plugins receive the dataset produced by the Assembly Service and process it to
produce an assembled output. Rhythmyx ships with a complete set of Assembly plugins that
handle standard assembly cases. The following standard Assembly plugins are shipped with
Rhythmyx:

 Velocity

The Velocity Assembly plugin is the standard text assembly plugin shipped with
Rhythmyx. It produces arbitrary text outputs, including HTML and XML, by
merging Content Item data passed by the Assembly Services with formatting defined
in a Velocity Template.

 Legacy

The Legacy Assembly plugin is a wrapper that invokes a legacy XSLT assembly
application. This Assembly plugin is provided to ensure backwards-compatibility
with earlier versions of Rhythmyx for Rhythmyx Version 6.0 and later.

 Binary

The Binary Assembly plugin is the standard plugin used to produce binary outputs.
It produces the bound binary value (defined in the $sys.binary binding) as output.
The MIME type is output from the bound value of $sys.mimetype as well.

 Dispatch

The Dispatch Assembly plugin provides conditional Template processing using a
conditional binding. The Template select by the conditional processing produces an
output as if it had been called directly.

 Debug

The Debug Assembly plugin is used for debugging Templates. It is invoked by
adding the HTTP parameter sys_debug="true" to the assembly URL. This
plugin returns the results of all bindings and bound Slots. (NOTE: Debug works
differently in the Legacy Assembly plugin. Debug output of the Legacy Assembly
plugin is the plain text XML document produced by the assembly request handler.)

78 Rhythmyx Technical Reference Manual

 Database Publishing

The Database Publishing Assembly plugin generates XML output used to publish
content to databases.

 Slot Content Finders
Slot Content Finders are extensions that determine the list of Content Items that can
potentially be included in a Slot when assembling a Content Item. Rhythmyx ships with a set
of four standard Slot Content Finders:

 sys_RelationshipContentFinder

This Content Finder is the standard Content Finder used to retrieve a list of Content
Items manually assigned to a Slot.

 sys_AutoSlotContentFinder

This Content Finder automatically generates a list of related Content Items based on
a query defined when assigning the Content Finder to a Slot.

 sys_LegacyAutoSlotContentFinder

This Content Finder automatically generates a list of related Content Items using a
legacy XML query resource.

 sys_ManagedNavContentFinder

This Content Finder generates a Managed Navigation tree for us in Managed
Navigation Slots. For additional details about Managed Navigation, see "Managed
Navigation" in the Rhythmyx Implementation Guide.

 Item Filters and Filter Rules
While Slot Content Finders define a potential list of related Content Items to assemble, the
final list of related Content Items actually assembled is determined by the Item Filter that is
run on the list of related Content before executing the assembly. An Item Filter defines a set
of Filter Rules that will be applied to the list of related Content Items. Filter Rules are
extensions that define the rules to use to filter the list of related Content Items to determine
the final list of Content Items that will be processed. The following standard Filter Rules are
shipped with Rhythmyx:

 sys_filterByPublishableFlag

Filters based on value of the Publishable Flag of the State of the Content Item.

 sys_filterByFolderPaths

Filters based on the path of the Content Item.

 sys_filterBySitefolder

Used for cross-site linking.

 Chapter 3 Assembly Reference 79

Assembly Processing
Assembly processing begins when an assembly request is submitted to the Assembly servlet. The
assembly request may originate in a variety of ways:

 a user requesting preview of a Content Item;
 a user requesting Active Assembly of a Content Item;
 a publishing request for an assembled page;
 a request to assemble Slot contents.

The Assembly Servlet creates an Assembly Item. At this point, the Assembly Item consists of the
following data:

 the Content ID and Folder ID;
 Context variables;
 the ID or Name (if derived from sys_template) of the Template to use when assembling the

Content Item;
 any HTTP parameters submitted with the request.

Next, the Template is loaded into memory.

Following loading of the Template, the Content Item data is loaded into the the Assembly Item as a Java
Content Repository (JCR) Node and Property Structure. The Content Item is loaded as a JSR-170 Node
containing one Property object per Content Item field. Simple children (children that are edited directly
within the parent Content Item) are loaded as multi-value Property objects of the JCR Node. Complex
children (children that are edited in a popup Detail Editor) are loaded as child Node objects of the parent
Node. Each child node is comprised of a set of Property objects containing the child field data.

After the Content Item data has been loaded, Variable bindings are calculated to produce final binding
values.

At this point, the Assembly plugin is invoked. An Assembly plugin takes one parameter (item), whose
value is the Assembly Item created by the earlier processing.

The resulting assembled Content Item is then returned to the requestor.

80 Rhythmyx Technical Reference Manual

The following flowchart illustrates the overall process:

Figure 22: Assembly Processing

Assembly Plugin Processing
In most cases, Assembly plugin processing is simple. The Binary plugin retrieves the binary data supplied
by the value of the $sys.binary binding. The Dispatch plugin calls the Template specified by the
conditional processing in the bindings. The Debug Assembler returns all content Item node properties and
the results of all binding calculations.

The Velocity plugin, which is used to assemble text content, is more complicated. When the Velocity
plugin receives an an Assembly Item, it invokes the Velocity engine to assemble the dynamic content into
the Template. When it encounters a Slot, the plugin invokes the Slot Content Finder extension specified
for that Slot to retrieve the list of related Content Items to add to that Slot. Slot Content Finder extensions
take the following parameters:

 the ID of the Content Item that owns the Slot;
 the Slot for which to find the related Content Items (as IPSTemplateSlot); and

 Chapter 3 Assembly Reference 81

 a map of parameters (the specific parameters are defined by the individual Content Finder
extension).

The Content Finder uses these parameters to define a preliminary list of related Content Items to include
in the Slot. The Content Finder then invokes an Item Filter to filter the list. An Item Filter consists of a
set of Filter Rule extensions. Input parameters to Filter Rules include the list of Content Items to filter and
a map or parameters (the specific parameters are defined by individual Filter Rule extensions). Each Filter
Rule returns a list of Content Items that have passed the Filter Rule. Filter Rules are processed in the
order in which they are specified in the Item Filter. Thus Filter Rules specified later in the Item Filter are
only applied to the list Content Items that have been returned by the Filter Rules specified earlier.

82 Rhythmyx Technical Reference Manual

The final list of related Content Items is then submitted to the Assembly engine to be assembled.

The following flowchart illustrates the processing of the Velocity plugin:

Figure 23: Velocity assembly processing

 Chapter 3 Assembly Reference 83

Recursive Content Roll-up
Rhythmyx assembles content into an output page by applying the fixed formatting to the local content of
the content item, then recursively rolling up any snippets into the slots. The snippets are in turn assembled
by applying the fixed formatting to the local content of the snippet, then recursively rolling up any child
snippets into their slots, and so on. Each level of recursion includes only its own local content and
templates and the data to identify the Content Items one level down. No level needs information about
any level deeper than the next one down.

When Rhythmyx assembles a page:

1 An assembly request is submitted to the Assembly engine.

2 The engine processes the request and invokes the Assembly plugin. Recursive rollup takes
place in either the Velocity plugin or the Database Publishing plugin.

3 When the plugin encounters a Slot, the Content Finder assigned to that Slot is invoked to
determine a list of related Content Items to assemble. The Content Finder invokes an Item
Filter to filter that list and output a final list of related Content Items.

4 Each related Content Item is itself submitted to the Assembly engine. Assembly processing
starts from the beginning for each submitted Content Item. Each of these Content Items will
be returned as a Snippet.

5 If any of the related Content Items themselves contain Slots, Step 3 is repeated for each Slot.
As assembly of each related Content Item is completed, the assembled Content Item is added
to the page.

6 When the recursive assembly of the Snippets is complete and all local content has been
formatted, Rhythmyx returns the Snippet or Page.

84 Rhythmyx Technical Reference Manual

The following graphic illustrates the process:

Figure 24: Recursive Rollup

 Chapter 3 Assembly Reference 85

Velocity in Rhythmyx
Velocity is the standard text templating languages used in Rhythmyx to produce text output. Rhythmyx
supports all Velocity functionality.

Rhythmyx is shipped with a complete set of Velocity macros to handle standard assembly tasks, but you
can also define your own Velocity macros. Standard macros are defined in the file
<Rhythmyxroot>/sys_resources/vm/sys_assembly.vm. No customer macros should be
added to this file, as it will be overwritten on upgrade. Custom macros should be defined in the file
<Rhythmyxroot>/rx_resources/vm/rx_assembly.vm.

Note that there is no system of precedence in Velocity, so you cannot override a system macro with a
custom macro. Instead, you must define a custom macro and use that instead.

Best practice for defining a custom macro is to copy the system macro that most closely matches the
functionality you want from the sys_assembly.vm to rx_assembly.vm, change the name, then
modify it.

If you want to allow Active Assembly in a macro, you must include the #startAA<object> and
#endAA<object> macros appropriate to that type of object:

 Page
#startAAPage
#endAAPage

 Field
#startAAField
#endAAField

 Slot
#startAASlot
#endAASlot

 Snippet
#startAASnippet
#endAASnippet

Whenever you modify a macro, preview a Content Item, then add the HTTP parameter
sys_reinit=true to the URL and resubmit the URL. This parameter re-initializes the Velocity
engine, which reloads the macros. If you do not submit a request with this parameter, the cached macros
will be used, which will not include the changes you have made

For details about Velocity and implementing Velocity macros, consult one of the following references:

 Joseph D. Gradecki and Jim Cole, Mastering Apache Velocity
 Rob Harrop, Pro Jakarta Velocity

86 Rhythmyx Technical Reference Manual

Embedding Velocity Code in Templates
In addition to using macros, you can embed Velocity code directly into Template Markup. Use this option
when you want to produce a specific Velocity result in a single Template rather that across several
Templates. (If you use the same code in more than one Template, writing a macro instead makes more
sense.

When embedding Velocity code in a Template, follow the same rules as when writing a macro.
Specifically, when defining a Rhythmyx object in your Velocity code (a Field, a Slot, or a Snippet), you
must use the #startAA<object> and $endAA<object> macros within your Velocity markup (see
"Velocity in Rhythmyx" on page 85).

Standard Velocity Macros
Standard macros shipped with Rhythmyx can be found in the Snippet Drawer. (NOTE: You can also add
custom macros to the Snippet Drawer; for details see Adding Macros to the Snippet Drawer on page 94.)
Standard macros are classified into three categories:

 Field macros
The macros in this category are used to add Content Item field data to the Template.

 Slot macros
The macros in this category are used to add Slots to the Template.

 Slot Miscellaneous macros and prebuilds.
Miscellaneous macros do not fit in the other two categories. Prebuilds are prebuild examples
of pages and common Managed Navigation Templates. (NOTE: Only the miscellaneous
macros will be documented below. Prebuilds are provided as examples for the development
of your own Templates.)

NOTE: Macros that begin with a prefix of two underscores ("__macroname") are internal system macros
and are not documented.

 Chapter 3 Assembly Reference 87

Field Macros
Field macros are used to add Content Item field data to a Template. They are found in the Rx Field
Macros section of the Snippet Drawer.

#field
#field(fieldname)

This is the standard macro used to add field data to a Template. When Active Assembly is invoked, fields
that are added to the Template using this macro will be displayed with Active Assembly decorations
(meaning the data in the field can be edited. If this field does not have a value, an error will be generated
when assembling the Template.

Parameters

Parameter Description

fieldname Name of the field whose data will be added to the Template during assembly. If the specified
field does not have a value, an error will be returned when assembling the Template.

#field_if_set
#field_if_set(before,field,after)

This macro is used to add field data to the Template if the field is optional in the Content Editor (meaning
it may not contain data). If the field contains no data, when assembling the Template, it is simply omitted
from the assembled output.

The beforetext and aftertext parameters can be used to add formatting that will only be included in the
assembled output if the field is included.

If the field is included in the assembled output, it will include Active Assembly decorations in Active
Assembly mode.

Parameters

Parameter Description

before Text that will be included in the assembled output before the field value. Generally used to add
HTML formatting that will be included in the assembled output only if the field is included.

fieldname Name of the field whose data will be added to the Template during assembly. If the specified
field does not have a value, it will be omitted from the assembled output.

after Text that will be included in the assembled output after the field value. Generally used to add
HTML formatting that will be included in the assembled output only if the field is included.

88 Rhythmyx Technical Reference Manual

#fieldLink
#fieldlink(fieldname,$pagelink)

This macro is used to add field data to the Template when:

 the field data will be the contents of an anchor tag (<a>) ; and
 you want users to be able to follow the link (users can follow the link by hold down the ALT

key while clicking on it; double-clicking on the link opens the field for editing).
If you use any other field macro for the contents of an anchor tag, users will not be able to follow the link;
clicking on the link will open the field for editing.

Parameter Description

fieldname Name of the field whose data will be added to the Template during assembly. If the specified
field does not have a value, an error will be returned when assembling the Template.

$pagelink Required binding parameter. The value of this parameter must be $pagelink.

#displayfield
#displayfield(fieldname)

This macro is used to add field data to the Template when the field data is not intended to be eligible for
Active Assembly, such as when adding the title to the HTML header. When Active Assembly is invoked,
fields that are added to the Template using this macro will not be displayed with Active Assembly
decorations (in other words, the field is not eligible to be edited in Active Assembly). If this field does not
have a value, an error will be returned when assembling the Template.

Parameters

Parameter Description

fieldname Name of the field whose data will be added to the Template during assembly. If the specified
field does not have a value, an error will be returned when assembling the Template.

#datefield
#datefield(fieldname,fieldformat)

This macro is used to add date fields to the Template. When assembled, the field data will be formatted
using the pattern specified in the format parameter. When Active Assembly is invoked, fields that are
added to the Template using this macro will be displayed with Active Assembly decorations (meaning the
data in the field can be edited). If this field does not have a value, an error will be generated when
assembling the Template.

Parameters

Parameter Description

fieldname Name of the field whose data will be added to the Template during assembly. If the specified
field does not have a value, an error will be returned when assembling the Template.

fieldformat The format that will be applied to the field data when assembled into the output.

 Chapter 3 Assembly Reference 89

#displaydatefield
#displaydatefield(fieldname,fieldformat)

This macro is used to add date fields to the Template, when the field data is not intended to be eligible for
Active Assembly. When assembled, the field data will be formatted using the pattern specified in the
format parameter. When Active Assembly is invoked, fields that are added to the Template using this
macro will not be displayed with Active Assembly decorations (in other words, the field is not eligible to
be edited in Active Assembly). If this field does not have a value, an error will be returned when
assembling the Template.

Parameters

Parameter Description

fieldname Name of the field whose data will be added to the Template during assembly. If the specified
field does not have a value, an error will be returned when assembling the Template.

fieldformat The format that will be applied to the field data when assembled into the output.

#datefield_if_set
#datefield_if_set(before,field,format,after)

This macro is used to add date field data to the Template if the field is optional in the Content Editor
(meaning it may not contain data). If the field contains no data, when assembling the Template, it is
simply omitted from the assembled output.

The beforetext and aftertext parameters can be used to add formatting that will only be included in the
assembled output if the field is included.

When assembled, the field data will be formatted using the pattern specified in the format parameter.

If the field is included in the assembled output, it will include Active Assembly decorations in Active
Assembly mode.

Parameters

Parameter Description

before Text that will be included in the assembled output before the field value. Generally used to add
HTML formatting that will be included in the assembled output only if the field is included.

field Name of the field whose data will be added to the Template during assembly. If the specified
field does not have a value, it will be omitted from the assembled output.

format The format that will be applied to the field data when assembled into the output.

aftter Text that will be included in the assembled output after the field value. Generally used to add
HTML formatting that will be included in the assembled output only if the field is included.

90 Rhythmyx Technical Reference Manual

Slot Macros
Slot macros are used to add Slots and their Contents to a Template. They are found in the Rx Slot Macros
section of the Snippet Drawer.

#slot_simple
#slot_simple(slotname)

The simplest Slot macro, #slot_simple inserts the Slot Contents with no additional formatting. If the Slot
contains no related Content Items, it is omitted from the assembled output.

Parameters

Parameter Description

slotname Name of the Slot to add to the Template.

#slot_wrapped
#slot_wrapped(slotname,startslottext,endslottext)

This macro adds the contents of the Slot, with each related Content Item wrapped in the in the text
specified by the beforetext and aftertext parameters. If the Slot contains no related Content Items, it is
omitted from the assembled output.

Parameters

Parameter Description

slotname Name of the Slot to add to the Template .

startslottext Text that will be included in the assembled output before each related Content Item in the Slot.
Generally used to add HTML formatting for each individual Content Item. (For users familiar
with earlier versions of Rhythmyx, the beforetext and aftertext parameters are equivalent to the
Snippet Wrapper.)

endslottext Text that will be included in the assembled output after each related Content Item in the Slot.
Generally used to add HTML formatting for each individual Content Item. (For users familiar
with earlier versions of Rhythmyx, the beforetext and aftertext parameters are equivalent to the
Snippet Wrapper.)

#slot
#slot(slotname,header,before,after,footer,params)

This macro adds the contents of the Slot to the Template, wrapped in HTML formatting. Each related
Content Item wrapped in the in the text specified by the beforetext and aftertext parameters. The Slot
contents as a whole are wrapped in the text specified by the header and footer parameters. If the Slot
contains no related Content Items, it is omitted from the assembled output.

Parameters

Parameter Description

slotname Name of the Slot to add to the Template .

 Chapter 3 Assembly Reference 91

Parameter Description

header Text that will be included in the assembled output before the contents of the Slot. Generally
used to add HTML formatting to wrap the Slot as a whole. For users familiar with earlier
versions of Rhythmyx, the header and footer are equivalent to the Slot Wrapper.

before Text that will be included in the assembled output before each related Content Item in the Slot.
Generally used to add HTML formatting for each individual Content Item. (For users familiar
with earlier versions of Rhythmyx, the beforetext and aftertext parameters are equivalent to the
Snippet Wrapper.)

after Text that will be included in the assembled output after each related Content Item in the Slot.
Generally used to add HTML formatting for each individual Content Item. (For users familiar
with earlier versions of Rhythmyx, the beforetext and aftertext parameters are equivalent to the
Snippet Wrapper.)

footer Text that will be included in the assembled output after the contents of the Slot. Generally
used to add HTML formatting to wrap the Slot as a whole. For users familiar with earlier
versions of Rhythmyx, the header and footer are equivalent to the Slot Wrapper.

params The extra parameters to pass to the slot content finder. The parameters can either be a Java
java.util.Map object, or a string that is encoded as a URL query, i.e.
name=value&name2=value2&... Generally, using a Java Map object is preferable; it is
required if the values of the parameters you want to pass include the ampersand ["&"] or
equals sign ("=") characters.

#node_slot
#node_slot(node slotname, header, before, after, footer, params)

This macro is used when both Velocity Templates and XSL Variants co-exist on the same system,
generally to implement Managed Navigation. Works like the full slot macro, but uses the Content Item
specified in the node parameter to expand the list of related Content Items in the Slot. Contents of
#node_slot are not eligible to be modified using Active Assembly.

Parameters

Parameter Description

node The Content Item used to expand the list of related Content Items in
the Slot.

slotname Name of the Slot to add to the Template .

header Text that will be included in the assembled output before the contents
of the Slot. Generally used to add HTML formatting to wrap the Slot
as a whole. For users familiar with earlier versions of Rhythmyx, the
header and footer are equivalent to the Slot Wrapper.

before Text that will be included in the assembled output before each related
Content Item in the Slot. Generally used to add HTML formatting for
each individual Content Item. (For users familiar with earlier
versions of Rhythmyx, the beforetext and aftertext parameters are
equivalent to the Snippet Wrapper.)

92 Rhythmyx Technical Reference Manual

Parameter Description

after Text that will be included in the assembled output after each related
Content Item in the Slot. Generally used to add HTML formatting for
each individual Content Item. (For users familiar with earlier
versions of Rhythmyx, the beforetext and aftertext parameters are
equivalent to the Snippet Wrapper.)

footer Text that will be included in the assembled output after the contents
of the Slot. Generally used to add HTML formatting to wrap the Slot
as a whole. For users familiar with earlier versions of Rhythmyx, the
header and footer are equivalent to the Slot Wrapper

params The extra parameters to pass to the slot content finder. The parameters
can either be a Java java.util.Map object, or a string that is encoded as
a URL query, i.e. name=value&name2=value2&...

#slot_page
#slot_page(slotname,header,before,after,footer,params)

This macro adds the contents of the Slot to the Template, wrapped in HTML formatting. Each related
Content Item wrapped in the in the text specified by the beforetext and aftertext parameters. The Slot
contents as a whole are wrapped in the text specified by the header and footer parameters. If the Slot
contains no related Content Items, it is omitted from the assembled output.

Parameters

Parameter Description

slotname Name of the Slot to add to the Template .

header Text that will be included in the assembled output before the contents of the Slot. Generally
used to add HTML formatting to wrap the Slot as a whole. For users familiar with earlier
versions of Rhythmyx, the header and footer are equivalent to the Slot Wrapper.

before Text that will be included in the assembled output before each related Content Item in the
Slot. Generally used to add HTML formatting for each individual Content Item. (For users
familiar with earlier versions of Rhythmyx, the beforetext and aftertext parameters are
equivalent to the Snippet Wrapper.)

after Text that will be included in the assembled output after each related Content Item in the Slot.
Generally used to add HTML formatting for each individual Content Item. (For users
familiar with earlier versions of Rhythmyx, the beforetext and aftertext parameters are
equivalent to the Snippet Wrapper.)

footer Text that will be included in the assembled output after the contents of the Slot. Generally
used to add HTML formatting to wrap the Slot as a whole. For users familiar with earlier
versions of Rhythmyx, the header and footer are equivalent to the Slot Wrapper.

params The extra parameters to pass to the slot content finder. The parameters can either be a Java
java.util.Map object, or a string that is encoded as a URL query, i.e.
name=value&name2=value2&...

itemsPerPage The number of Slot Content Items to include on each output HTML page

pageNumber The current page being rendered; generally $sys.page. For example, $pageNumber=if
($sys.page != null) {$sys.page;} else {1;}

 Chapter 3 Assembly Reference 93

Miscellaneous Macros
The macros in this category do not fit in either of the other categories. The are located in the
Miscellaneous and Prebuild section of the Snippet Drawer.

#inner
#inner()

This macro is used with Global Templates to add the page content top the Global Template output. This
macro has no parameters.

#children
#children(childname,template,beforetext,aftertext,header,footer)

This macro is used on page Templates to add child editor data to the Page Template output. If the Content
Item has no child Content Items, the formatted results of this macro are omitted from the assembled
output.

Parameters

Parameter Description

childname Name of the child Field Set to add to the Template .

template The Template used to format the content from the child editor.

beforetext Text that will be included in the assembled output before each child
Content Item in the Slot. Generally used to add HTML formatting for
each individual child Content Item.

aftertext Text that will be included in the assembled output after each child
Content Item in the Slot. Generally used to add HTML formatting for
each individual child Content Item.

header Text that will be included in the assembled output before the contents
of the Slot. Generally used to add HTML formatting to wrap the Slot
as a whole.

footer Text that will be included in the assembled output after the contents
of the Slot. Generally used to add HTML formatting to wrap the Slot
as a whole.

#pager
#pager($pagecount $pagenumber $previous_markup $pagetext
$next_markup)

This macro is used on page Templates to add child editor data to the Page Template output. If the Content
Item has no child Content Items, the formatted results of this macro are omitted from the assembled
output.

Parameters

Parameter Description

$pagecount The total number of pages to be generated. Usually $sys.pagecount

94 Rhythmyx Technical Reference Manual

Parameter Description

$pagenumber The current page being generated. Usually $sys.page

$previous_markup The markup to render in the previous link. The previous link is
rendered if the page number is greater than one. Anything valid for
an anchor tag is allowed in this parameter.

$pagetext Text to render that could, for example, indicate where the user is in
the sequence of pages. For example, “page 3” or “page 2 of 5”. The
string is usually defined in the bindings; for example: $pagetext
= “Page “ + $sys.page + “of” + $sys.pagecount.

$next_markup The markup to render in the next link. The next link is rendered if the
page number is less than the total count of pages. Anything valid for
an anchor tag is allowed in this parameter.

#linkback_head
#linkback_head()

This macro is used to add linkback functionality to HTML pages generated by Percussion CM Server.
Linkback allows a user to go directly from a published HTML page to the Percussion CM System Content
Item from which the page is generated. The macro adds the following linkback meta tag code to the
Template:

<meta name="perc_linkback" id="perc_linkback"
content="$rx.linkback.encode($sys.params)"/>

Percussion CM System uses this code to process linkback.

The macro should be added to the header of Global Templates or to the header of Page Templates that do
not use Global Templates.

This macro has no parameters

Adding Macros to the Snippet Drawer
If you define a custom macro, you may want to add it to the Snippet Drawer of your Rhythmyx
Workbench to make it easy to use. You can share the Snippet Drawer entry with other Rhythmyx
implementers in your organization.

Custom macros should be added to a new Category rather than to one of the standard Categories shipped
with Rhythmyx. To add a custom Category:

1 In the Rhythmyx Workbench, right-click in the Snippet Drawer and from the popup menu,
choose Customize. (Note: do not click on the "Snippets" tab. Clicking on the tab displays a
different popup menu that does not include the Customize option.

 Chapter 3 Assembly Reference 95

The Rhythmyx Workbench displays the Customize Palette dialog.

Figure 25: Customize Palette dialog

2 In the Button bar, click the [New] button and choose New Category. (Note: You must add
custom Snippets to a unique category. They cannot be added to the categories shipped with
Rhythmyx.)

96 Rhythmyx Technical Reference Manual

The Rhythmyx Workbench adds a new Snippet category with the default name Unnamed
Category.

Figure 26: Customize Palette dialog with Unnamed Category

3 Enter a new Name for the Category.

4 Click the [OK] button to save your changes.
To add a a new macro

1 Open the Customize Palette dialog as described in Step 1 of adding a custom Category.

2 Select the custom Category to which you want to add the macro. Macros should not be added
to the standard Categories shipped with Rhythmyx.

3 In the Button bar, click the [New] button and choose New Item.

4 The Customize Palette dialog displays the Template panel with the default name Unnamed
Template.

5 Enter the Name of the macro and an optional Description.

6 To add macro parameters,

a) Click the [New] button next to the Variables table.

The Custom Palette dialog adds opens a new row with the value name_1 in the Name
column.

b) Change the default value of the Name to the name of the first parameter in your macro.

 Chapter 3 Assembly Reference 97

c) Optionally, enter a Description.

d) Optionally, specify a Default value for the parameter. This value will be used when
processing the Template if no value is specified for the parameter in the Template markup.

e) Repeat Steps a-d for each parameter in the macro.

7 In the Template Pattern field, enter the macro as you want it added to the Template HTML
markup. You can use the [Insert Variable Placeholder] button to add macro parameters or add
them manually.

8 Click the [OK] button to save the macro entry.
To copy and modify an existing macro entry:

1 In the Snippet Drawer, right-click on the macro you want to copy and from the popup menu,
choose Copy.

2 Open the custom macro category to which you want to add the macro. Right-click and from
the popup menu, choose Paste.

3 Open the Customize Palette dialog as described in Step 1 of adding a custom Category.

4 Modify the macro data to match your custom macro.

5 Click the [OK] button to save the macro.

98 Rhythmyx Technical Reference Manual

Assembly Extensions
This section documents extension types used only in content assembly:

 Assembly Plugins (see below)
 Content Finders (see "Slot Content Finders" on page 102)

The following extension types, which are used in both assembly and publishing, are documented
elsewhere:

 JEXL functions (see "JEXL Extensions" on page 132)
 JSR-170 queries (see "Java Content Repository" on page 143)
 Item Filter rules (see "Item Filters and Filter Rules" on page 144)
 Location Scheme Generators (see "Location Scheme Generator Extensions" on page 147)

Assembly Plugins
Assembly plugins perform the actual assembly of content output, either directly by invoking an underlying
template engine such as Velocity.

The output produced by an assembly plugin depend on the configuration of the plugin and the parameters
defined for the Assembly Item input to the plugin.

Assembly plugins must implement the interface IPSAssembler They must also explicitly implement the
interface IPSExtension. (NOTE: The implementation must be thread safe; for details see General
Requirements of Extensions on page 180.)

 Chapter 3 Assembly Reference 99

binaryAssembler
Passes binary Content Item data directory to the output.

Class Name
com.percussion.services.assembly.impl.plugin.PSBinaryAssembler

Interface
com.percussion.extension, com.percussion.services.assembly.IPSAssembler

Context
global/percussion/assembly/

Category String
assembly

Parameters
None

databaseAssembler
Generates an XML document to match the requirements of the database publisher handler.

Class Name
com.percussion.services.assembly.impl.plugin.PSDatabaseAssembler

Interface
com.percussion.extension, com.percussion.services.assembly.IPSAssembler

Context
global/percussion/assembly/

Category String
assembly

Parameters
None

100 Rhythmyx Technical Reference Manual

debugAssembler
Generates debug output regardless of the specified Template.

Class Name
com.percussion.services.assembly.impl.plugin.PSDebugAssembler

Interface
com.percussion.extension, com.percussion.services.assembly.IPSAssembler

Context
global/percussion/assembly/

Category String
assembly

Parameters
None

dispatchAssembler
Chooses a Template based on the defined bindings and invokes assembly of the result.

Class Name
com.percussion.services.assembly.impl.plugin.PSDispatchAssembler

Interface
com.percussion.extension, com.percussion.services.assembly.IPSAssembler

Context
global/percussion/assembly/

Category String
assembly

Parameters
None

 Chapter 3 Assembly Reference 101

legacyAssembler
Assembles content using a legacy query application and stylesheet.

Class Name
com.percussion.services.assembly.impl.plugin.PSLegacyAssembler

Interface
com.percussion.extension, com.percussion.services.assembly.IPSAssembler

Context
global/percussion/assembly/

Category String
assembly

Parameters
None

velocityAssembler
Assembles the submitted Content Item using the using the Velocity engine and the submitted Template.

Class Name
com.percussion.services.assembly.impl.plugin.PSVelocityAssembler

Interface
com.percussion.extension, com.percussion.services.assembly.IPSAssembler

Context
global/percussion/assembly/

Category String
assembly

Parameters
None

102 Rhythmyx Technical Reference Manual

Slot Content Finders
Slot Content Finders generate a list of related Content Items to be added to a Slot during assembly.
Content Finders must also be able to invoke Item Filters to filter the initial list to a final list.

Slot Content Finders must implement the interface IPSSlotContentFinder. (NOTE: The implementation
must be thread safe; for details see General Requirements of Extensions on page 180.)

sys_AutoSlotContentFinder
Automatically generates a list of related Content Items for the associated Slot based on the specified Java
Content Repository query. This list if filtered by an Item Filter then submitted to be assembled using the
Template specified in the template parameter.

Class Name
com.percussion.services.assembly.impl.finder.PSAutoSlotContentFinder

Interface
com.percussion.services.assembly.IPSSlotContentFinder

Context
global/percussion/slotcontentfinder/

Parameters

Name Data Type Description

query String (Required) The JSR-170 "SQL" query to use to generate the base list of
Content Items for the slot.

type String The type of query. Options include sql and xpath (NOTE: Only
sql is currently supported). Defaults to sql if not specified.

template String (Required) The Template to use to format the Content Items returned.
Either the name or the ID may be specified.

max_results String The maximum number of items to return for the slot. Defaults to
unlimited.

sys_LegacyAutoSlotContentFinder
Uses a legacy query resource to automatically generate a list of related Content Items for the associated
Slot. When invoked, this Content Finder builds an internal request to the Rhythmyx resource specified in
the resource parameter. This request includes any parameters passed from the calling Template, as well as
the parameters of the ContentFinder itself. Note that if the calling Template specifies values for any
parameters of the Content Finder, the parameters passed from the Template override the parameters of the
Content Finder's association with the Slot.

 Chapter 3 Assembly Reference 103

The returned XML document must conform to the sys_AssemblerInfo DTD. The document must consist
of a set of linkurl elements. Each linkurl element must include the attributes contentid and variantid.
Rhythmyx does not return an error if these attributes do not have a value, but the Slot will contain no
content. If a Slot using this Content Finder does not include any Content Items, check to be sure that the
resource is returning an XML document that meets the requirements.

Class Name
com.percussion.services.assembly.impl.finder.PSLegacyAutoSlotContentFinder

Interface
com.percussion.services.assembly.IPSSlotContentFinder

Context
global/percussion/slotcontentfinder/

Parameters

Name Data Type Description

resource String Specifies the Rhythmyx query resource to run to generate the list of
related Content Items. The query resource must conform to the
sys_AssemblerInfo DTD.

template String (Required) The Template to use to format the Content Items returned.
Either the name or the ID may be specified.

max_results String The maximum number of items to return for the slot. Defaults to
unlimited.

104 Rhythmyx Technical Reference Manual

sys_ManagedNavContentFinder
Returns the list of Content Items assigned to the Slot by users.

Class Name
com.percussion.services.assembly.impl.finder.PSNavSlotContentFinder

Interface
com.percussion.services.assembly.IPSSlotContentFinder

Context
global/percussion/slotcontentfinder/

Parameters

Name Data Type Description

node_to_return String If the value of this parameter is "self", the Navon associated with the
current Content Item is returned. If the value of this parameter is "root"
ot is not specified, then the Navtree is returned.

template String (Required) The Template to use to format the Content Items returned.
Either the name or the ID may be specified.

sys_RelationshipContentFinder
Returns the list of Content Items assigned to the Slot by users.

Class Name
com.percussion.services.assembly.impl.finder.PSRelationshipContentFinder

Interface
com.percussion.services.assembly.IPSSlotContentFinder

Context
global/percussion/slotcontentfinder/

Parameters

Name Data Type Description

template String (Required) The Template to use to format the Content Items returned.
Either the name or the ID may be specified.

max_results String The maximum number of items to return for the slot. Defaults to
unlimited.

 Chapter 3 Assembly Reference 105

Name Data Type Description

order_by String Comma-separated list of fields to use to sort the list of related Content
Items. For each field specified, you can add either DESC to sort in
descending order or ASC to sort in ascending order (defaults to DESC if
neither is specified).

sys_TranslationContentFinder
Returns the list of Content Items associated in a Translation Relationship with the Content Item being
assembled.

Class Name
com.percussion.services.assembly.impl.finder.PSTranslationContentFinder

Interface
com.percussion.services.assembly.IPSSlotContentFinder

Context
global/percussion/slotcontentfinder/

Parameters

Name Data Type Description

template String (Required) The Template to use to format the Content Items returned.
Either the name or the ID may be specified.

max_results String The maximum number of items to return for the slot. Defaults to
unlimited.

order_by String Comma-separated list of fields to use to sort the list of related Content
Items. For each field specified, you can add either DESC to sort in
descending order or ASC to sort in ascending order (defaults to DESC if
neither is specified).

Writing Assembly Extensions
Use methods in the assembly service when performing assembly processing.

When writing a method that retrieves assembly design elements, the method should always call the
assembly service itself before calling any of its methods.

IPSAssemblyService asm = PSAssemblyServiceLocator.getAssemblyService();

106 Rhythmyx Technical Reference Manual

Obtaining Slots
To obtain a single Slot, use the findSlotByName method of the assembly service. Be sure you have called
the assembly service before attempting to use this method.

IPSTemplateSlot slot = asm.findSlotByName(slotName);
To obtain multiple Slots, use the findSlotsByNames method.

IPSTemplateSlot slots = asm.findSlotsByNames(slotNames);

Generating a List of Slot Contents
Once you have loaded a Slot, you can generate a list of the Content Items in that Slot:

String findername = slot.getFinderName();
IPSSlotContentFinder finder = asm.loadFinder(findername);
List<IPSAssemblyItem> relitems = finder.find(item, slot, params);
return relitems;

 107

C H A P T E R 4

Workflow Reference

A Workflow is a business process that defines a sequence of processing stages in the content management
system. Workflows organize the content development and management process by defining the process,
controlling the progress of Content Items through the process, and controlling user access to Content
Items at particular points in the process. Each Content Item must exist in a Workflow, although a
particular Content Editor may provide a choice of Workflows.

Workflows exist separately from other elements of the content management system, but are fully
integrated into the system as whole. Content Editors require Workflows to function and the Publisher
must know the Workflow State of the Content Items to extract for publishing.

108 Rhythmyx Technical Reference Manual

Logical Architecture and Processing
This section is comprised of two subsections. The first details the logical architecture of the Workflow
engine. The second outlines how Content Items are processed by the Workflow engine.

Logical Architecture
The central architectural feature of the Workflow engine is the Workflow object itself, as illustrated in the
following graphic:

Figure 27: Logical architecture of the Workflow engine

 Chapter 4 Workflow Reference 109

While the Workflow object itself does have some properties (namely the name of the Role assigned as the
Workflow Administrator and the name of the Initial State of the Workflow), it serves primarily as a
container for the other elements of the Workflow.

Three elements are defined at the Workflow level:

 A set of references to Roles defined on the Rhythmyx server.
Roles do not exist within Workflow. Roles exist on the Rhythmyx server, where they are
defined and their properties and list of Members are maintained. Each Workflow includes a
set of references to these Roles. A Workflow can only use Roles that have been associated
with the Workflow.

 A set of zero or more Notifications.
A Notification is an object that defines the subject and message contents for e-mail messages
that will be sent to users based on the occurrence of certain events within the Workflow.

 A set of one or more States
States define the stages in the Workflow. States must be ordered to provide sequence in the Workflow
(although Content Items can generally move from one State to another without reference to the sequence
of the Workflow). Each State includes the following data:

 The Sort Order of the State
The Sort Order defines the position of the State in relation to the other States in the Workflow.

 The Publishable flag
The Publishable flag is used by the Publishing engine to determine whether a Content Item is
eligible to be published.

 A set of assigned Roles
A Role must be assigned to a State before Members of that Role can act on Content in that
State. (Note that a Role must be associated with the Workflow before it can be assigned to a
State). Each Role associated with a Workflow can be assigned to multiple States in the
Workflow. The actions available to the Role depend on the data defined for its assignment to
the State:

 Assignment type

The Assignment type defines the visibility of the Content Item to Members of the
Role and the actions users in the Role can take on those Content Items. If the
Assignment type is Assignee, Members of the Role have full access to Content Items
in the State. If the Assignment type is Reader, Members of the Role can see Content
Items in the State and can view their content and properties, but cannot act on them
(such as to edit them or to Transition them to another State). If the Assignment type
is None, Members of the Role can neither see Content Items in that State nor act on
them.

 Ad Hoc Assignment enabled

If Ad Hoc Assignment is enabled, when a user Transitions a Content Item into the
State, they can assign the Content Item to a specific Member of a State-assigned Role
for action. Otherwise, the Content Item is available generally to any Member of any
State-assigned Role with an Assignment Type of Assignee.

110 Rhythmyx Technical Reference Manual

 Notification enabled

If Notification is enabled, Members of the Role can receive e-mail Notifications
when a Transition occurs.

 Show in Inbox

If Show in Inbox is enabled, Content Items in the State are listed in the Inbox of
users in State-assigned Roles.

A State also serves as a container for a set of Transitions. A Transition is a mechanism that moves a
Content Item from one State to another. Each Transition specifies the Target State, to which the Content
Item will move. A Transition also specifies:

 Approval data, such as whether a specific number of approvals is required or a specific set of
Roles is required to approve the Content Item before the Transition is actually executed. If
specific Roles are required to approve the Transition, these Roles must be associated with the
Transition.

 Whether comments are required when executing the Transition.
 Whether a Transition is the default Transition out of the State
 A Workflow Action extension to execute when making the Transition.
 A Notification to send when executing the Transition, including the set of users to whom to

send the Notification e-mail message.

Workflow Processing
When a Content Item is created, it is assigned to a Workflow and moves into the Initial State of that
Workflow. A user must be in a Role assigned to the current State of a Content Item to potentially have
access to that Content Item, depending on the Assignment type. Users in Roles with an Assignment type
of Assignee potentially have full access to Content Items in the State. Users in Roles with an Assignment
type of Reader can see the Content Item and can view its properties, but cannot act on Content Items in
the State (such as to modify its data or to Transition it to another State). Users in Roles with an
Assignment type of None can neither see nor act on Content Items in the State.

Note that the Assignment of a Role to a State is only one factor that determines whether a user has access
to a Content Item. Other factors affecting access are the Community of the Content Item and whether the
Content Item is checked out and to whom. If a user is in a Role that has access to a Content Item based on
its current State, but the user is logged in to a different Community than that of the Content Item, the user
will not be able to access the Content Item (although they may be able to see the Content Item for Active
Assembly). If a user is in a Role that has access to a Content Item based on its current State, and the
Content Item is in the user's logged Community, but the Content Item is checked out to another user, the
first user will be able to see the Content Item and view its properties and content, but will not be able to
modify it or Transition it.

The current State of a Content Item also determines how it will be processed for publishing. Item Filter
Rules can be defined to select Content Items for publishing based on the Publishable flag. For additional
details, see Item Filters and Filter Rules (on page 144).

 Chapter 4 Workflow Reference 111

When the Content Item is ready to move to another State, a user executes a Transition on it. The approval
configuration of the Transition determines whether the Content Item actually makes the Transition to
another State. A Transition can be configured to require a specific number of approvals or to require
approvals from a specific set of Roles. If the Transition is configured to require a specific number of
approvals, the Content Item remains in its current State until the specified number of approvals have
occurred, at which point the Content Item Transitions to the State specified by that Transition. (Thus if
one approval is required for the Transition, the Transition is executed immediately.) Note that if another
Transition with fewer approvals is executed in the meantime, the Content Item will be Transitioned once
the lower number is achieved. For example, suppose the following Transition configurations have been
defined:

 An Approve to Public Transition that requires three approvals.
 A Return to Draft Transition that requires only one approval.

If the Approve to Public Transition has two approvals when another user executes the Return to Draft
Transition, the Return to Draft Transition is executed immediately. The previous approvals for the
Approve to Public Transition are deleted. Those users will have to approve the Content Item again after it
re-enters the State.

If a Transition is configured to require approvals from specified Roles, it remains in its current State until
each of the required Roles has approved the Transition. Again, if another Transition that has lower
requirements is executed in the meantime, that Transition occurs and all existing approvals are deleted.

If comments are required, the system displays a Comment dialog where the user must enter text before the
Transition will actually take place.

At this point, any Workflow Actions associated with the Transition are also triggered.

Finally, if any Notifications are associated with the Transition, e-mails are generated to the specified
recipients.

112 Rhythmyx Technical Reference Manual

Extending Publishable States
The values of the Publishable property for States are maintained in the Rhythmyx Keyword Editor of the
Rhythmyx Workbench. You can thus add more values to the Publishable property to extend it and make it
more flexible.

WARNING! Do not delete the default values of this Keyword. If you delete any of these default values,
Publishing will no longer work correctly.

These values are used in the Item Filters that filter Content Items during Publishing. Use the
sys_filterByPublishableFlag Item Filter and set the value of the sys_flagValue to the Keyword value for
your Publishable State.

For example, suppose you wanted to implement a staging area where you could evaluate content before
publishing it to your live web site. You could add a new value to the Publishable property, s (for staging).
You would also create a State in the Workflow (perhaps also called Staging) and would assign S as the
value of Publishable for this State. Finally, you would define a new Item Filter including the Filter Rule
sys_filterByPublishableFlag with the value of the sys_flagValues parameter set to s.

Set the Publishable value for a State using the Edit State Page. The default Publishable values are:

Value Processing

N Default. Content in this State is not published, or will be unpublished the next time the
Publisher runs.

Y Content in this State is published when the Publisher runs.

I Publish the Last Public Revision of the Content Item.

 Chapter 4 Workflow Reference 113

Workflow Actions
Only one extension type is associated with the Workflow engine, Workflow Actions. Workflow actions
process Content Items when triggered by a Transition. The specific processing is defined by the
extension.

Workflow Actions must implement the interface IPSWorkflowAction. (NOTE: The implementation must
be thread safe; for details see General Requirements of Extensions on page 180.)

sys_createTranslations

Name:
sys_createTranslations

Context:
global/percussion/workflow/

Description:
This action creates a Translation Content Item of the original Content Item in each Locale in which the
original Content Item does not already have a corresponding Translation Content Item. The action uses a
configuration file, sys_createTranslations.properties, which is located in the directory
<Rhythmyxroot>/rxconfig/i18n. This file defines the type of Translation Relationship to create between
the original Content Item and the Translation Content Item for each Locale. It also defines a list of
Locales for which Translation Content Items will not be generated.

Class Name;
com.percussion.workflow.PSCreateTranslations

Resource File:
rxconfig/I18n/sys_createTranslations.properties

Interface:
com.percussion.extension.IPSWorkflowAction

Parameters:
None

114 Rhythmyx Technical Reference Manual

sys_PublishContent

Name:
sys_PublishContent

Context:
global/percussion/workflow/

Description:
This extensions triggers the publication of a Edition when a Transition is executed. The action requires an
XML file (rxconfig/Workflow/publish.xml), which defines the following data. The XML
should conform to the following DTD:

<?xml encoding="UTF-8"?>
 <!ELEMENT PSXConfig (PSXPublish+)>
 <!ATTLIST PSXConfig
 polling-time CDATA #IMPLIED>
 <!ELEMENT PSXPublish (PSXWorkflowId, PSXTransitionId, PSXEdition)>
 <!ELEMENT PSXWorkflowId PCDATA>
 <!ELEMENT PSXTransitionId PCDATA>
 <!ELEMENT PSXEdition PCDATA>

The root element of the document can have any name; we use PSXConfig for convenience. The
optional polling-time attribute of this element specifies the time interval (in milliseconds) between
successive attempts to publish a specific Edition when that Edition is already being published. A longer
interval results in fewer requests to the server but a longer lag between the Transition of the Content Item
and its publication.

The root element contains one or more PSXPublish elements. The PSXPublish element is a
container for a configuration defining

 a Workflow
The Workflow is specified by the PSXWorkflowId child element of PSXPublish. The
value of this element is the ID of the Workflow.

 a Workflow Transition

The Transition is specified by the PSXTransitionId child element of PSXPublish.
The value of this element is the ID of the Transition.

 an Edition
The Edition to run when a Content Item is Transitioned in the Workflow specified by the
PSXWorkflowId element using the Transition specified by the PSXTransitionId
element. The Edition is specified in the PSXEdition child element of PSXPublish. Any
Edition can be specified, but typically an Incremental Edition is used.

(specified by
For example:

<PSXConfig polling-time="1500">
 <PSXPublish>

 Chapter 4 Workflow Reference 115

 <PSXWorkflowId>1</PSXWorkflowId>
 <PSXTransitionId>5</PSXTransitionId>
 <PSXEdition>301</PSXEdition>
 </PSXPublish>
 <PSXPublish>
 <PSXWorkflowId>1</PSXWorkflowId>
 <PSXTransitionId>9</PSXTransitionId>
 <PSXEdition>301</PSXEdition>
 </PSXPublish>
</PSXConfig>

This XML defines two configurations. The first configuration runs the Edition with the ID "301" when
the Transition with the ID "5" is performed in the Workflow with the ID "1". The second configuration
runs the Edition with the ID "301" when the Transition with the ID "9" is performed in the Workflow
with the ID "1". The system will attempt to publish the Editions every 1500 milliseconds (1.5 seconds).

Class Name;
com.percussion.workflow.PSPublishContent

Resource File:
rxconfig/Workflow/publish.properties

Interface:
com.percussion.extension.IPSWorkflowAction

Parameters:
None.

116 Rhythmyx Technical Reference Manual

sys_TouchParentItems

Name:
sys_TouchParentItems

Context:
Java/global/percussion/extensions/general/

Description:
This action touches all "parent" (Owner) items of the current item in Relationships whose Category is
Active Assembly. It finds all Ancestors of the Content Item in Active Assembly Relationships and updates
them by putting the current date/time and current user name in the CONTENTLASTMODIFIEDDATE
and CONTENTLASTMODIFIER columns of the CONTENTSTATUS table.

This exit uses the following resources in the sys_ceDependency application:

 parents.xml query - this resource must have a "pipe name" of parents.
 touchitem.xml - an update resource (with a pipe name of touchitem. this resource updates the

CONTENTSTATUS table. The only parameter of touchitem.xml is sys_contentid. This
parameter specifies a list of content IDs as a {link java.util.ArrayList ArrayList} object.

Class name:
com.percussion.extensions.general.PSTouchParentItems

Resource file:
classes

Interface:
com.percussion.extension.IPSWorkflowAction

Parameters:
None

 117

C H A P T E R 5

Publishing Reference

Publishing is the final phase of the Content Management process. Publishing extracts Content Item data
from the Repository, merges it with formatting to produce a final output, and saves the final output to its
delivery location.

The first section of this chapter outlines the logical architecture and processing of the Publishing engine.
The second section is a reference to the extensions used in Publishing.

118 Rhythmyx Technical Reference Manual

Logical Architecture and Processing
This section is comprised of two topics. The first describes the logical architecture of the Publishing
engine. The second describes publishing processing.

Logical Architecture
At the highest level, the logical architecture of publishing consists of the publishing engine, which resides
within the Rhythmyx server; and a set of configurations that determine what content will be output and the
target location for the output content.

The publishing engine consists of publishing jobs and one or more instances of the Publishing Handler.
The publishing job communicates with the Publishing Handler via a publishing queue. The Publishing
handler returns results to the publishing job via a status queue.

The configurations include:

 A set of Site registrations.
A Site registration defines a location where output will be published when publishing to a file
system. The output location may be a directory location or an FTP site. (In Database
Publishing, the output location is defined in the Templates.) The Site registration also defines
the Delivery Handler that deliver the published output to the target location.

 A set of Content Lists
A Content List is a named configuration that is submitted to a servlet that generates the list of
Content Items to publish. The key data of the Content List are:

 The Content List Generator

A Content List Generator is an extension that actually generates the list of Content
Items to publish. In most cases, the sys_SearchGenerator is used. This generator
uses a Java Content Repository (JCR) query to generate the list of Content Items to
publish. The generator sys_SelectedItemsGenerator is used in Content Lists for on-
demand publishing.

Note that you can write your own Content List Generator extensions. For details, see
Content List Generators (on page 126).

 The Item Filter

An Item Filter is a set of Filter Rule extensions that filter the list of Content Items
generated by the Content List Generator to produce a final list of Content Items to be
published. Rhythmyx is shipped with a number of standard Item Filters and Filter
Rules.

Note that you can write your own Filter Rule extensions. For details, see Item
Filters and Filter Rules (on page 144).

 Chapter 5 Publishing Reference 119

 The Template Expander

A Template Expander is an extension that generates the list of Templates to publish.
The sys_SiteTemplateExpander publishes all Templates associated with the Site
being published. The sys_ListTemplateExpander published only the Templates
specified.

Note that you can write your own Template Expander extensions. For details, see
Template Expanders (on page 127).

 A set of Editions
An Edition specifies a set of one or more Content Lists and the Site to which they will be
published.

 A set of Delivery Handlers
A Delivery Handler is an extension that delivers assembled content to an output location.
Rhythmyx includes a set of standard Delivery Handlers for common output targets (file
system, database, FTP, and secure FTP), but you can also write your own Delivery Handlers.
For details, see Delivery Types (see "Delivery Handlers" on page 129).

120 Rhythmyx Technical Reference Manual

The publishing process also invokes the Assembly engine.

The following graphic illustrates the logical architecture of the Publishing engine:

Figure 28: Publishing Architecture

Publishing Processing
Publishing processing begins when an Edition is submitted to be published. The request may be submitted
manually or it may be generated by the server as a scheduled task. When the Rhythmyx server receives
the publish Edition request, it generates a publishing job, which manages the remaining publishing
processing. Each publishing job is initiated with a priority. Publishing jobs with a higher priority will
interrupt jobs with a lower priority. Once processing of the higher-priority job is complete, the lower
priority job resumes.

 Chapter 5 Publishing Reference 121

The publishing job first runs any Editions Tasks that are defined as pre-Publishing tasks in the order in
which they are specified. If any task fails, processing stops unless the task is flagged as "Continue on
failure", in which case processing continues. If processing stops at this point, no content is delivered.

The publishing job next invokes the Content Lists associated with the Edition to generate a list of Content
Items to publish. In most cases, the sys_SearchGenerator is used. This Content List generator uses a JCR
query to select the Content Items to publish. Rhythmyx also includes another Content List generator,
sys_SelectedItemsGenerator, which is used for on-demand publishing. If these Content Lists generators
do not provide the required functionality, implementers can write their own Content List generators. For
details, see Content List Generators (on page 126).

The initial list of Content Items is then submitted to an Item Filter. An Item Filter is an ordered set of
Filter Rule Extensions. The list of Content Items is submitted to each rule in turn, and the filtered set of
Content Items is then submitted to the next Filter Rule. Rhythmyx is shipped with a set of standard Filter
Rules, but you can also write your own Filter Rule extensions if you need different functionality. For
details, see Item Filters and Filter Rules (on page 144).

The final filtered list of Content Items is then submitted to the Template Expander. A Template Expander
is an extension that generates a list of Templates to publish for each Content Item. The result may include
one, several or even zero Templates for each Content Item. Two standard Template Expanders are
shipped with Rhythmyx:

 sys_SiteTemplateExpander (publishes all Templates associated with the Site)
 sys_ListTemplateExpander (Publishes only the listed Templates)

Note that you can also write you own Template Expanders if the default Template Expanders do not
provide the desired functionality. For details, see Template Expanders (on page 127).

The Content List generator then formats the final list of Content Items into an XML document and sends it
to the publishing job. The publishing job then sets up a queue of Content Items to be published by the
Publishing Handler. Several instances of the Publishing Handler are generated. The exact number of
instances depends on the number of CPUs Rhythmyx can use. If only one CPU is available, a handful of
Publishing Handler instances may be created; a more powerful system with eight or sixteen CPUs may
process dozens of instances of the Publishing Handler.

When the Publishing Handler receives a Content Item, it first submits the assembly URL to the assembly
engine. After receiving the assembled Content Item returned from the assembly engine, the Publishing
Handler sends the assembled Content Item to the Delivery Manager. The Delivery Manager sends the
Content Item to the correct Delivery Handler. A Delivery Handler is a Rhythmyx extension that delivers
assembled Content Item to the final output location. Rhythmyx is shipped with four standard Delivery
Handlers:

 File System
 FTP
 SFTP
 Database

If the standard Delivery Handles do not provide the needed functionality, you can write your own
Delivery Handler. For details, see Delivery Handlers (on page 129)..

122 Rhythmyx Technical Reference Manual

The Publishing Handler returns the results of the processing to the publishing job through the status queue.
At the highest level, three results are possible for any specific Content Item:

 The Content Item is published successfully (it is successfully assembled and delivered to the
specified output location).

 Assembly of the Content Item may fail.
 Delivery of the Content Item may fail.

Publishing jobs can be cancelled. A cancellation takes priority over all other processing. When a job is
cancelled, all outstanding processing for that job is halted. All successfully published Content Items are
held in memory until processing of the last Content Item in the job is complete, at which point all Content
Items are delivered. Thus, a cancelled job does not result in a partially published output.

Once processing of the last Content Item is complete and the published output is delivered to the target
location, the publishing job runs any Edition Tasks that are defined as post-Publishing Tasks. Like pre-
Publishing tasks, these tasks are run in the order specified, and if a task fails processing stops unless the
task is flagged as "Continue on Failure".

 Chapter 5 Publishing Reference 123

Figure 29: Publishing Processing

124 Rhythmyx Technical Reference Manual

Demand Publishing
Demand Publishing processing is performed by a servlet designed specifically for that purpose. The
Publish Now Menu option sends its request to this servlet. The request must include either a Site ID or an
Edition ID. If an Edition ID is included, the specified Edition is run. If a Site ID is included, the servlet
searches the Editions associated with the specified Site to find an Edition that includes only one Content
List, which uses the sys_SelectedItemsGenerator. If multiple Editions are found that meet these criteria, a
warning is written to the log and an Edition is selected arbitrarily.

As installed, the Publish Now Menu Entry is configured to include the Site ID; the command
configuration includes the sys_siteid, with the value derived from the binding variable $sys_siteid.

If the sys_SelectedItemsGenerator does not provide functionality you want in your implementation, you
can implement and use a different Content List Generator for Demand Publishing. To use your custom
Content List Generator, add the HTML parameter sys_DemandPublishingGenerator to the Publish Now
Menu Entry. The value of this parameter should be the fully-qualified extension name of your custom
Content List Generator.

 Chapter 5 Publishing Reference 125

Configuring Unpublish Flags
Unpublish flags specify the value of the Publishable field of a Workflow State that indicates the Content
Items in that State should be unpublished. These values are case-insensitive alphabetical characters that
match the Value of a Publishable Keyword Choice, as illustrated below:

Figure 30: Publishable Keyword

The default unpublish flag is u. which is the value of the Archive Publishable Keyword Choice.

To specify multiple flags, enter multiple characters, separated by commas.

When you add a new unpublishable flag, you should also add a new Choice to the Publishable Keyword,
whose value matches the character you specified. You should also define a Workflow State that uses that
Keyword Choice in the Publishable field.

126 Rhythmyx Technical Reference Manual

Publishing Extensions
This section documents extension types used only in publishing:

 Content List Generators
 Template Expanders
 Publishing plugins

The following extension types, which are used in both assembly and publishing, are documented
elsewhere:

 JEXL functions
 Item Filter rules
 Location Scheme Generators

Content List Generators
Content List Generators generate a list of IDs (GUIDs) of Content Items to publish.

Content List Generators must implement the interface IPSContentListGenerator. (NOTE: The
implementation must be thread safe; for details see General Requirements of Extensions on page 180.)

sys_PublishedSiteItems
This Content List Generator generates a list of all Content Items published on a Site. Must be used in
conjunction with the sys_SiteTemplateExpander. Usually used for unpublishing.

Class Name
com.percussion.services.publisher.impl.PSSiteItemsGenerator

Interface
com.percussion.services.publishing.IPSContentListGenerator

Context
global/percussion/system

Parameters
None

 Chapter 5 Publishing Reference 127

sys_SelectedItemsGenerator
This Content List Generator generates a list of Content Items to publish based on a set of selected Content
Items. It is used in on-demand publishing.

Class Name
com.percussion.services.publisher.impl.PSSelectedItemsGenerator

Interface
com.percussion.services.publishing.IPSContentListGenerator

Context
global/percussion/system

Parameters
None

Template Expanders
Template Expanders generate a list of Templates to publish for each Content Item ID (GUID) input.

Template Expanders must implement the interface IPSTemplateExpander. (NOTE: The implementation
must be thread safe; for details see General Requirements of Extensions on page 180.)

NOTE: Percussion Software strongly recommends that you seek assistance from Percussion Professional
Services Organization before implementing a custom Template Expander.

sys_ListTemplateExpander
This Template Expander assigns the Templates specified in the template parameter to the Content Items
input. The specified Templates are assigned regardless of the Publish options specified for the Template
or of the visibility of the Template to the Site being published. If none of the specified Templates is valid
for an input Content Item ID, then no assembled output will be published for that Content Item.

Class Name
com.percussion.services.publisher.impl.PSListTemplateExpander

Interface
com.percussion.services.publishing.IPSTemplateExpander

128 Rhythmyx Technical Reference Manual

Context
global/percussion/system

Parameters

Name Data Type Description

template String (Required) Comma-separated list of Templates to publish.

sys_SearchGenerator
This Content List Generator generates a list of Content Items to publish based on a JCR query.

Class Name
com.percussion.services.publisher.impl.PSQueryContentListGenerator

Interface
com.percussion.services.publishing.IPSContentListGenerator

Context
global/percussion/system

Parameters

Name Data Type Description

query String (Required) The JSR-170 "SQL" query to use to generate the base list of
Content Items to be published.

 Chapter 5 Publishing Reference 129

sys_SiteTemplateExpander
This Template Expander assigns the Page Templates of the target Site to the Content Items input.

Class Name
com.percussion.services.publisher.impl.PSSiteTemplateExpander

Interface
com.percussion.services.publishing.IPSTemplateExpander

Context
global/percussion/system

Parameters

Name Data Type Description

default_template String If the value is all or is unspecified, all default Templates of the specified
Site will be published. If the value is dispatch, only default Templates
that use the Dispatch Assembly plugin will be published. If the value is
none, no default Templates will be published.

Delivery Handlers
A Delivery Handler delivers assembled Content Items to the final output location. Implementation of a
Delivery Handler requires three steps:

1 Write the Delivery Handler code.

Delivery Handlers must implement the interface IPSDelivery Handler. (NOTE: The
implementation must be thread safe; for details see General Requirements of Extensions on
page 180.)

2 Register the Delivery Handler as a Spring bean.

For details about registering a Spring bean in Rhythmys, see Spring Configurations (on page
171).

3 Create a Delivery Type registration for the Delivery Handler.

A Delivery Type exposes the Delivery Handler extension to the Publishing engine. Multiple
Delivery Types can registered for the Delivery Handler. To register a Delivery type:

a) In Content Explorer, choose the Publishing Design tab.

b) Click the Delivery Types Link.

Content Explorer displays the Delivery Types list.

c) In the Menu bar, choose Action > Create Delivery Type.

Content Explorer display the Delivery Type editor in the View and Edit pane.

130 Rhythmyx Technical Reference Manual

d) Enter a Name for the Delivery Type. The name must begin with a letter, and can contain
any alphanumeric characters, underscores, hyphens, or dots (periods). Optionally, enter a
free-form Description of the Delivery Type.

e) Enter the Spring Bean Name of the bean that configures the Delivery Handler used by the
Delivery Type. This value will be validated when the Delivery Type registration is saved;
therefore, the bean must be configured before you create the Delivery Type registration.

f) If you want to assemble Content Items when unpublishing them, check the Assemble Item
for Unpublish checkbox.

g) Click the [Save] button to save the Delivery Type registration.

 131

C H A P T E R 6

Shared Features

This chapter documents several Rhythmyx features that are shared by multiple Rhythmyx engines:

 Java Expression Language (JEXL)
 Java Content Repository (JCR) queries
 Item Filters and Filter Rules
 Location Schemes and Location Scheme Generators
 Scheduled Tasks

132 Rhythmyx Technical Reference Manual

Java Expression Language (JEXL)
Rhythmyx embeds the Java Expression Language (JEXL) engine to provide scripting functionality.

 In the Assembly engine, JEXL is used to define and process Bindings. For details, see
"Bindings" in the Rhythmyx Implementation Guide.

 In the Publishing Engine, JEXL is used to define locations for Location Scheme Generators.
For details, see Link Generation and Context (on page 147) and "Defining Contexts and
Location Schemes" in the Rhythmyx Implementation Guide.

For details about JEXL, see http://jakarta.apache.org/commons/jexl/.

JEXL Extensions
Standard JEXL functions are available in Rhythmyx. For details about these functions, see the Velocity
tools documentation (http://jakarta.apache.org/velocity/tools/index.htm). Rhythmyx also includes a
number of JEXL function extensions to support both assembly and location scheme generation.

If you need additional functionality, you can implement custom JEXL function extensions. JEXL
function extensions must implement the interface IPSJexlExpression. (NOTE: The implementation must
be thread safe; for details see General Requirements of Extensions on page 180.) They usually also
extend the PSJexlUtilBase class:

public class PSJexlExample extends PSJexlUtilBase implements
IPSJexlExpression

In addition to importing these two classes, you must also import IPSJexlMethod and IPSJexlParameter.

All JEXL extensions use Java 5 Annotation with the @IPSJexlMethod and @IPSJexlParam annotations:
@IPSJexlMethod(description="my method does something useful",
 params={@IPSJexlParam(name="part1",description="the first part"),
 @IPSJexlParam(name="part2", description="the second part")})
 public String myMethod(String part1, String part)

Note that the @IPSJexlParam annotations are an Array; they must be enclosed in curly braces and
separated by commas.

http://jakarta.apache.org/commons/jexl/
http://jakarta.apache.org/velocity/tools/index.htm

 Chapter 6 Shared Features 133

Assembly Utilities
The methods of this function provide data for use in assembly. The following methods are available:

 $rx.asmhelper.assemble
 $rx.asmhelper.isAASlot (slot)
 $rx.asmhelper.getPopupMenu
 $rx.asmhelper.getSingleParamValue
 $rx.asmhelper.getTidiedContent
 $rx.asmhelper.getTitle ($sys.item.guid)
 $rx.asmhelper.combine
 $rx.asmhelper.childValues

For details see "$rx.asmhelper" in the Rhythmyx Implementation Guide.

Class Name
com.percussion.services.assembly.jexl.PSAssemblerUtils

Interface
com.percussion.extension.IPSJexlExpression

Context
global/percussion/system/

Parameters
None

134 Rhythmyx Technical Reference Manual

Code and Decode Utilities
The methods of this function encode and decode data.

 $rx.codec.base64Decoder
 $rx.codec.base64Encoder
 $rx.codec.escapeForXml
 $rx.codec.decodeFromXml

For details see "$rx.codec" in the Rhythmyx Implementation Guide.

Class Name
com.percussion.services.assembly.jexl.PSCodecUtils

Interface
com.percussion.extension.IPSJexlExpression

Context
global/percussion/system/

Parameters
None

 Chapter 6 Shared Features 135

Keyword Utilities
The methods of this function provide access to Keyword data.

 $rx.keyword.keywordSelectChoices
 $rx.keyword.keywordChoices
 $rx.keyword.getLabel

For details see "$rx.keyword" in the Rhythmyx Implementation Guide.

Class Name
com.percussion.services.assembly.jexl.PSKeywordUtils

Interface
com.percussion.extension.IPSJexlExpression

Context
global/percussion/system/

Parameters
None

Conditional Processing Utilities
NOTE: This function is deprecated. JEXL expressions that use this binding should be rewritten to use the
JEXL if...else conditional function instead.

The method of this function is used to evaluate conditional statements.

For details see "$rx.cond" in the Rhythmyx Implementation Guide.

Class Name
com.percussion.services.assembly.jexl.PSCondUtils

Interface
com.percussion.extension.IPSJexlExpression

Context
global/percussion/system/

Parameters
None

136 Rhythmyx Technical Reference Manual

Database Utilities
The method of this function is used in database publishing.

For details see "$rx.db" in the Rhythmyx Implementation Guide.

Class Name
com.percussion.services.assembly.jexl.PSDbUtils

Interface
com.percussion.extension.IPSJexlExpression

Context
global/percussion/system/

Parameters
None

Document Utilities
The methods of this function process XML and HTML documents.

 $rx.doc.getDocument(url)
 $rx.doc.getDocument(url,user,password)
 $rx.doc.extractBody

For details see "$rx.doc" in the Rhythmyx Implementation Guide.

Class Name
com.percussion.services.assembly.jexl.PSDocumentUtils

Interface
com.percussion.extension.IPSJexlExpression

Context
global/percussion/system/

Parameters
None

 Chapter 6 Shared Features 137

Extension Utilities
The method of this function allows you to call an extension.

For details see "$rx.ext" in the Rhythmyx Implementation Guide.

Class Name
com.percussion.services.assembly.jexl.PSExtensionUtils

Interface
com.percussion.extension.IPSJexlExpression

Context
global/percussion/system/

Parameters
None

GUID Utilities
The method of this function allows you to retrieve GUIDs.

For details see "$rx.guid" in the Rhythmyx Implementation Guide.

Class Name
com.percussion.services.assembly.jexl.PSGuidUtils

Interface
com.percussion.extension.IPSJexlExpression

Context
global/percussion/system/

Parameters
None

138 Rhythmyx Technical Reference Manual

Internationalization Utilities
The method of this function is used to retrieve internationalized and localized data.

For details see "$rx.i18n" in the Rhythmyx Implementation Guide.

Class Name
com.percussion.services.assembly.jexl.PSI18nUtils

Interface
com.percussion.extension.IPSJexlExpression

Context
global/percussion/system/

Parameters
None

Link Utilities
The methods of this function allow you to manipulate links.

 $rx.link.addParams
 $rx.link.getAbsUrl
 $rx.link.getRelUrl

For details see "$rx.link" in the Rhythmyx Implementation Guide.

Class Name
com.percussion.services.assembly.jexl.PSLinkUtils

Interface
com.percussion.extension.IPSJexlExpression

Context
global/percussion/system/

Parameters
None

 Chapter 6 Shared Features 139

Location Utilities
The methods of this function allow you to generate hypertext links.

 $rx.location.generate
 $rx.location.generateToPage
 $rx.location.getFirstDefined
 $rx.location.siteBase($sys.site)

For details see "$rx.location" in the Rhythmyx Implementation Guide.

Class Name
com.percussion.services.assembly.jexl.PSLocationUtils

Interface
com.percussion.extension.IPSJexlExpression

Context
global/percussion/system/

Parameters
None

140 Rhythmyx Technical Reference Manual

Navigation Utilities
The methods of this function are used in processing Managed Navigation. They are only valid when
applied to nodes returned from the Managed Navigation Slot Content Finder.

 $rx.nav.findProperty
 $rx.nav.findNode

For details see "$rx.nav" in the Rhythmyx Implementation Guide.

Class Name
com.percussion.services.assembly.jexl.PSManagedNavUtils

Interface
com.percussion.extension.IPSJexlExpression

Context
global/percussion/system/

Parameters
None

 Chapter 6 Shared Features 141

Pagination Utilities
The methods of this function are used when paginating assembled Content Items. The following methods
are available:

 $rx.paginate.fieldContentPageCount
 $rx.paginate.getFieldPage
 $rx.paginate.getSlotPage
 $rx.paginate.slotContentPageCount

For details see "$rx.pagination" in the Rhythmyx Implementation Guide.

Class Name
com.percussion.services.assembly.jexl.PSPaginateUtils

Interface
com.percussion.extension.IPSJexlExpression

Context
global/percussion/system/

Parameters
None

142 Rhythmyx Technical Reference Manual

String Utilities
The methods of this function return session IDs that can be returned to Rhythmyx when calling Rhythmyx
applications or other URLs via HTTP.

 $rx.session.getJSessionID
 $rx.session.getSessionID

For details see "$rx.session" in the Rhythmyx Implementation Guide.

Class Name
com.percussion.services.assembly.jexl.PSSessionUtils

Interface
com.percussion.extension.IPSJexlExpression

Context
global/percussion/system/

Parameters
None

String Utilities
The methods of this function allow you to allow you to manipulate string values.

 $rx.string.stringTo Map
 $rx.string.equalNumbers
 $rx.string.extractNumber

For details see "$rx.string" in the Rhythmyx Implementation Guide.

Class Name
com.percussion.services.assembly.jexl.PSStringUtils

Interface
com.percussion.extension.IPSJexlExpression

Context
global/percussion/system/

Parameters
None

 Chapter 6 Shared Features 143

Java Content Repository
Rhythmyx uses the Java Content Repository (JCR) to retrieve Content Item data from the Repository and
to represent it for assembly.

In Assembly, the Content Item data is submitted to the Assembly engine as a JCR Node and Property
object; for details see Assembly Processing (on page 79). JCR queries are also used to generate lists of
Content Items automatically when assembling Automated Slots. The JCR query generates the list of
Content Items to include in the Slot. For details, see the topics "Creating an Automated Slot" and
"Writing Automated Slot Queries" in the Rhythmyx Implementation Guide.

In publishing, JCR queries are used by the Query Content List Generator, which is the standard Content
List Generator.

Rhythmyx only supports the JCR functionality required to support assembly. Only Content Items can be
accessed as nodes; Folders cannot be accessed as JCR nodes. JCR data methods are supported to provide
read-only access to Nodes and properties. Behavioral and set methods are not supported. If called, these
methods throw either an UnsupportedOperationException or a JCR-specific exception, such as a
LockException.

A Content Item is represented as a JCR node. Use node methods to access or operate on a Content Item as
a whole., The fields in the Content Item are represented as properties of the Content Item node. Use
property methods to access and operate on Content Item fields. Simple child content (child content stored
in a separate table but edited within the Content Editor) are represented as multi-valued properties of the
Content Item node. Use multivalued Property methods to access and operate on these fields. Complex
child content (child content edited in a popup Detail Editor) are represented as child nodes of the parent
Content Item. Use standard node methods to access and operate on these fields.

Read access is available for NodeDefinition, Node Type, and Property Definition. UUIDs of nodes are
not globally unique.

Since a Rhythmyx Content Item can have multiple parents (in Rhythmyx terms, it can be the Dependent in
multiple Relationships), the methods getParent and getDepth cannot be supported. The only exception is
Managed Navigation nodes, which do support these methods.

Field and Content Type names are transformed by adding "rx:" as the namespace. Content Type names
are case-insensitive, but field names are case-sensitive. Space characters in field and Content Type names
are replaced with underscore characters ("_") because spaces are invalid in a JCR query.

The JCR Query Manager is partially implemented. Row, Query, and QueryResult are implemented, but
you cannot store queries. Only the SQL syntax is supported. The XPath syntax is implemented but not
supported. Full-text search queries are not implemented. To query all Content Types, use nt:base.

For complete details about the Java Content Repository, see the JSR-170 spec at
http://www.jcp.org/en/jsr/detail?id=170.

NOTE: JCR queries cannot be extended.

http://www.jcp.org/en/jsr/detail?id=170

144 Rhythmyx Technical Reference Manual

Item Filters and Filter Rules
Item Filters filter a list of Content Items to be published. An Item Filter is a named set of Filter Rules.
The Filter Rules are extensions that perform the actual filter processing. For example, the following
standard Filter Rules are shipped with Rhythmyx:

 Filter by Folder Paths
Filters based on the path of the Content Item.

 Filter by Publishable Flag
Filters based on value of the Publishable Flag of the State of the Content Item.

 Filter by Site Folder
Validates that the target Content Item for a link exists in the location specified.

Filter Rules are ordered within an Item Filter, and Filter Rules defined with a higher precedence are run
before those with a lower precedence. Each Filter Rule in an Item Filter operates only on Content Items
that have passed previous Filter Rules.

Item Filters perform two functions:

 Link filtering
When assembling a page, link filtering prevents the broken links that point from a Public
Content Item to related Content Items that are not public by preventing the assembly of these
links.

Link filtering also prevents Snippets of Content Items that are not public from being
assembled into a Public Content Item when assembling a published Page Template.

NOTE: In Rhythmyx Version 5.7 and earlier, this functionality was known as Authorization Type, or
Auth Type. Auth Type functionality has been subsumed into Item Filter functionality in Rhythmyx
Version 6.0.

 Content List filtering
During Publishing, after a Content List Generator generates the initial list of Content Items to
publish, an Item Filter filters the initial list to generate a final list of Content Items to publish.
For example, a standard Item Filter used during publishing is the Filter by Publishable Flag.
This filters the initial list of Content Items (usually all Content Items on a Site) to return only
those Content Items that are in a State flagged as Publishable.

Filter Rule Extensions
Filter Rule extensions perform the actual filtering processing. A Filter Rule takes a list of Content Items
as its input, applies the rules to that list and returns a list of Content Items that meet the specified criteria.

Filter Rule extensions must implement the interface IPSItemFilterRule. (NOTE: The implementation
must be thread safe; for details see General Requirements of Extensions on page 180.)

 Chapter 6 Shared Features 145

sys_filterByFolderPaths
Filters the submitted list of Content Items based on the Folders specified. Only Content Items that exist in
the specified Folder pass the filter.

Class Name
com.percussion.services.filter.impl.PSFolderPathFilter

Interface
com.percussion.services.filter.IPSItemFilterRule

Context
global/percussion/itemfilter/

Parameters

Name Data Type Description

sys_folderPaths String One or more Folder paths (use semicolons to separate multiple
Folder paths). The paths may contain one or more wildcards (%)
which have the same semantics as in SQL. If the path does not
contain wildcards, the path must match exactly.

To return the contents of a Folder and all of its descendants, you
must specify the path twice, first without the wildcard, then with the
wildcard. For example, to return all of the contents of the
EnterpriseInvestments Site, you would have to specify
"//Sites/EnterpriseInvestments/,//Sites/EnterpriseInvestments/%".

146 Rhythmyx Technical Reference Manual

sys_filterByPublishableFlag
Filters the submitted list of Content Items based on value of the Publishable Flag of the State of the
Content Item.

Class Name
com.percussion.services.filter.impl.PSPublishableStateFilter

Interface
com.percussion.services.filter.IPSItemFilterRule

Context
global/percussion/itemfilter/

Parameters

Name Data Type Description

sys_flagValues String Content Valid values of the Content Item State to use when filtering the
list of Content Items. Use commas to separate multiple values.

sys_filterBySiteFolder
Used for cross-site linking. Checks the Folder specified to ensure that the target Content Item for the link
being published exists in that Folder, then checks to confirm that the Path to that Folder includes the Site
Root for the specified Site. If this test fails, checks whether the Content Item exists on the specified Site
at all. If the Content Item passes any of these tests, the matching path will be published. Otherwise, the
link is not published.

Class Name
com.percussion.services.filter.impl.PSSiteFolderFilter

Interface
com.percussion.services.filter.IPSItemFilterRule

Context
global/percussion/itemfilter/

Parameters
None

 Chapter 6 Shared Features 147

Link Generation and Context
Since Rhythmyx decouples Content Management from delivery, a mechanism is required to generate links
(such as hypertext links between HTML pages, or links to image files and CSS files). Links that are valid
when previewing a Content Item on the Rhythmyx server will not be valid when viewing a final published
page from a Web server.

Location Schemes build these links. In Rhythmyx Version 6.0, links are generated based on Java
Expression Language (JEXL) expressions. (In earlier version, UDFs provided link generation
functionality. In both cases, a Location Scheme builds a path to use in a link.) The output of the JEXL
expression defines the path to the location.

Location Schemes are defined for different output environments, known in Rhythmyx as Contexts. Each
Context, which is identified using an integer, defines an output environment that has a different path for
links. For example, at its simplest, a Rhythmyx implementation will include two Contexts. The first,
Context 0, is the default Preview Context for Rhythmyx; it defines all links used when previewing
Rhythmyx Content Items in relation to the Rhythmyx installation Root. The second Context (in this case,
we will call it Context 1) is the Publish Context. It defines all links in relation to the root of the Web
application to which Rhythmyx page output is published.

In many cases, the links within published output use a different path than that to which the output is
published. In that case, you will need two Contexts, one to define the delivery location and one to define
the links within the published output. The FastForward implementation uses this technique.

Using Context also allows you to define different formatting for your outputs. You can choose to link to
different stylesheets to produce different output renderings in different output locations, or define Context
Variables that allow you to change the rendering of the output depending on Context.

Location Schemes are used during assembly to define the paths for hypertext links and links to images and
static site files such as CSS files. Location Schemes are used during publishing to define the location to
which the published output will be delivered.

Location Scheme Generator Extensions
The default Location Scheme Generator in Rhythmyx Version 6.0 is sys_JexlAssemblyLocation. This
extension builds a location path by evaluating a Java Expression Language (JEXL) expression. (NOTE:
Several legacy Location Scheme Generation Extensions are also shipped with Rhythmyx. For details
about these extensions, see Legacy Extension Reference on page 190.

If none of these extensions meet your needs, you can implement a new Location Scheme Generator
Extension. Location Scheme Generator extensions must implement the interface IPSAssemblyLocation.
(NOTE: The implementation must be thread safe; for details see General Requirements of Extensions on
page 180.)

148 Rhythmyx Technical Reference Manual

sys_JexlAssemblyLocation
Builds a delivery location by evaluating a Java Expression Language (JEXL) expression

Class Name
com.percussion.services.publisher.impl.PSJexlLocationGenerator

Interface
com.percussion.extension.IPSAssemblyLocation

Context
global/percussion/contentassembler/

Parameters

Name Data Type Description

expression String Required. The JEXL expression to be evaluated to create the
delivery location

 Chapter 6 Shared Features 149

Scheduled Tasks
A scheduled task is processing run by Rhythmyx automatically according to a pre-defined schedule.

Rhythmyx uses the Quartz Enterprise Job Scheduler to provide scheduling processing. See
http://www.opensymphony.com/quartz/ for more details.

Scheduled Task extensions provide the task processing. The processing is defined by the extension, and
need not include only Rhythmyx processing. The sys_runCommand Scheduled Task extension, for
example, runs a native system command. Scheduled Task extensions use the interface IPSTask. (NOTE:
The implementation must be thread safe; for details see General Requirements of Extensions on page
180.) These extensions must return an IPSTaskResult object, which includes the following properties:

 wasCompleted
A boolean property that indicates whether task processing was completed successfully or
failed.

 getProblemDescription
A string property that describes the result of processing. The text should provide a description
of the result that will be meaningful to a non-technical user. May be null if extension
processing was completed successfully.

 getNotificationVariables
A map of the binding variables returned by the extension. The key for each map property
should be the name of the binding variable in the correct format ($variablename; for example,
$sys.editionName). The value of the property is the value of the variable.

http://www.opensymphony.com/quartz/

150 Rhythmyx Technical Reference Manual

sys_purgePublishingLog
Purges publishing logs created more than the specified number of days in the past. The extension can be
configured to archive logs before purging.

Class Name
com.percussion.services.schedule.impl.PSPurgePublishingLog

Interface
com.percussion.services.filter.IPSTask

Context
global/percussion/system/

Parameters

Name Data Type Description

numberOfDays String The number of days for which to preserve logs. Logs created more
than the specified number of days in the past will be purged.
Defaults to 30 if not specified. (Logs created more than thirty days
in the past will be purged.)

enableArchive String If the value is true, logs will be archived before being purged. If
the parameter is null or contains any other value, logs will not be
archived before being purged.

 Chapter 6 Shared Features 151

sys_purgeScheduledTaskLog
Purges scheduled task logs created more than the specified number of days in the past.

Class Name
com.percussion.services.schedule.impl.PSPurgeScheduledTaskLog

Interface
com.percussion.services.filter.IPSTask

Context
global/percussion/system/

Parameters

Name Data Type Description

numberOfDays String The number of days for which to preserve logs. Logs created more
than the specified number of days in the past will be purged.
Defaults to 30 if not specified. (Logs created more than thirty days
in the past will be purged.)

sys_runCommand
Runs the specified native system command.

Class Name
com.percussion.services.schedule.impl.PSRunCommand

Interface
com.percussion.services.filter.IPSTask

Context
global/percussion/system/

Parameters

Name Data Type Description

command String The command to run.

152 Rhythmyx Technical Reference Manual

sys_runEdition
Publishes the specified Rhythmyx Edition.

Class Name
com.percussion.services.schedule.impl.PSRunEdition

Interface
com.percussion.services.filter.IPSTask

Context
global/percussion/system/

Parameters

Name Data Type Description

editionName String The name of the Edition to publish.

 153

C H A P T E R 7

System Issues

This chapter addresses technical issues involving the underlying system (Rhythmyx server, JBoss
container, etc) rather than a specific engine of the Content Management System.

154 Rhythmyx Technical Reference Manual

Custom Implementations
Rhythmyx can be extended by adding custom JSPs or servlets.

Before attempting any custom implementation, familiarize yourself with the Rhythmyx container, JBoss.
A variety of resources are available for learning about JBoss, including the jboss.org Web site.

Implementing Custom Java Server Pages and Servlets
Customizations can be implemented as a separate web application from Rhythmyx, as a Rhythmyx web
application, or as a Web Services client application.

Implementing a separate web application should be reserved for applications that cannot be implemented
as a Rhythmyx web application, such as a third-party product. These web applications cannot use
Rhythmyx server APIs; they must use Rhythmyx Web Services to access Rhythmyx functionality.

If your customization needs a user interface and needs to authenticate in Rhythmyx, implement it as a
custom Rhythmyx Web application. These applications use Rhythmyx authentication and can access
Rhythmyx functionality and data (such as user session data) directly. If you do not need a user interface,
consider using Web Services to implement your customization as a Web Services client. For details about
implementing Web Services, see the Rhythmyx Services Development Kit.

Custom Java Server Pages (JSPs) should be added to the directory
<Rhythmyxroot/AppServer/server/rx/deploy/rxapp.ear/rx-
app.war/user/pages. Any subdirectory structure below this directory is allowed. None of the
contents of this directory are touched when the system is upgraded. JSPs in this directory require
authentication unless their security configuration specifically allows anonymous access. (See below for
details about security configuration.) These JSPs have access to session data and Rhythmyx server APIs.

Custom servlets should be implemented as dispatched Spring MVC Controllers. These MVC Controllers
are configured in the file
<Rhythmyxroot/AppServer/server/rx/deploy/rxapp.ear/rx-app.war/WEB-
INF/config/user/spring/user-Dispatcher-servlet.xml. Specify any controller classes
and URL mappings. Optionally, you can also specify any initialization parameters for the servlet as well.
The configuration file includes example configurations. While you can update the mappings in the file
directly, recommended practice is to create a separate XML file in the Dispatch directory (one level below
the /rx-app.war/WEB-INF/config/spring/ directory), and add <include> tags to user-Dispatcher-
servlet.xml. When running several "applications" on the Rhythmyx server, this practice isolates them
from one another somewhat.

Recommended practice for adding Spring beans to the user dispatcher configuration is to define a bean
configuration file for each MVC Controller bean in a subdirectory of
<Rhythmyxroot/AppServer/server/rx/deploy/rxapp.ear/rx-app.war/WEB-
INF/config/user/spring/ and import these beans into the user dispatcher configuration. This
practice averts conflicts between beans defined in the user dispatcher configuration. If the name of the file
ends with the string -servlet.xml, it will be loaded into the dispatcher servlet application context and will
inherit the Spring application context constructed from all of the other files in that directory. Files that do
not end with the string -servlet.xml are loaded as user beans.

 Chapter 7 System Issues 155

NOTE: You should not deploy a servlet by simply adding it to
<Rhythmyxroot/AppServer/server/rx/deploy/rxapp.ear/rx-app.war/WEB-
INF/web.xml because this file is a system resource that may be overwritten on upgrade and your
deployed servlet will be lost.

When implementing form-based applications, recommended practice is to extend Spring's
SimpleFormController. The form controller automates much of the routine processing, including creating
a model bean for your form and binding all submitted values to this bean. A variety of view technologies
is available, including Velocity templates. Recommended practice for most forms is to use simple JSP
pages (with or without JSTL) and placing these pages in the WEB-INF/pages directory where they cannot
be browsed outside of the form servlet.

Use the class PSDatasourceSessionFactoryBean to configure a Hibernate session factory based on a
datasource configured in the Rhythmyx Server Administrator. For details, see the Javadoc for this
method. Note that Hibernate mappings cannot be specified with wildcards. The Javadoc for
PSDatasourceSessionFactoryBean describes this issue, or see the jboss.org Web site for details.

Obtaining the User and Session
Custom applications often need the Rhythmyx session ID and the authenticated user name.

The authenticated user name can be obtained from the standard getRemoteUser() method.

The Rhythmyx request is stored as an attribute on the ServletRequest. The Rhythmyx request contains the
session ID, which is the only data needed for access to the Rhythmyx API. The PSO Toolkit provides a
convenient method for obtaining the session ID:

public PSSessionUser(HttpServletRequest request)
{
 String user = request.getRemoteUser();
 String session = RxRequestUtils.getSessionId(request);
}

Handling PSItemStatus
A common issue encountered when writing Web applications in Rhythmyx is how to handle the call to
prepareForEdit().

In most form-based Web applications, the client performs a GET to retrieve the content information for
editing. Later, the user will submit the form to the server, usually with a POST.

If prepareForEdit() is not called until the form-submission request (the POST of modified data), it may be
too late. Another user may have already started to modify the same Content Item (or Content Items). If
you call prepareForEdit() when the user first opens the edit page (on the GET), the Content Item is
checked out for the duration of the edit session.

156 Rhythmyx Technical Reference Manual

In most applications, implementers opt to check out the Content Item on the GET rather than waiting for
the POST. This practice requires, however, that you store the PSItemStatus information that was returned
from prepareForEdit() until the the subsequent POST request. Two options are available for storing this
data:

 The simplest solution is to pass the PSItemStatus object to the Web layer and store it as an
attribute on the HttpSession. This approach works so long as session timeouts do not occur
while the form window is open. If a session timeout occurs, the form will be renewed, but the
checkout state will be lost.

 An alternative is to use EHCache, which is installed as part of the Hibernate Stack. Spring
has an adapter for EHCache. See the documentation for
org,springframework.cache.ehcache.EhCacheFactoryBean.

Implementing Transactional Services
In Rhythmyx, binary fields are always loaded when they are referenced, not when the Content Item is
opened. Programs that need to manipulate binary fields should do so inside the Rhythmyx transaction.
Rhythmyx uses Spring 2.0 and Hibernate 3.2 to maintain transactions, and you can take advantage of the
support they provide. Creating a new transactional service allows you to extend the Rhythmyx transaction
to include your own methods, which is the safest way to manipulate binary fields and other data that might
be lazily loaded.

To add a new service:

1 Define a new interface that contains your service methods.

2 Build a new class that extends HibernateDaoSupport and implements your interface.

3 Create an XML file that defines your implementation as a Spring bean.

4 Build a locator class that extends PSBaseServiceLocator.
An example code package illustrating this process is available from the Percussion Forum
(http://forum.percussion.com/).

Service Interface
The service interface methods should encapsulate all of the code that needs to be transactional. Processing
contained in objects returned by your service will not be inside the transaction. The only restriction on the
interface is that none of the methods can have the same name as any of the methods in
HibernateDaoSupport.

Service Implementation
The services class must:

 implement the service interface you created; and
 extend org.springframework.orm.hibernate3.support.HibernateDaoSupport (which contains

the support for the transaction manager.)
@Transactional
public class SampleServiceImpl extends HibernateDaoSupport
 implements SampleService

http://forum.percussion.com/

 Chapter 7 System Issues 157

Note the @Transactional annotation, which tells Spring to execute the class inside the
transaction.

Implementation class methods must be thread safe (they must contain appropriate synchronization
methods for access to shared data.

Spring Bean
The Spring bean is defined in an XML file that is added to the user configuration directory
(<Rhythmyxroot>/AppServer/server/rx/deploy/rxapp.ear/rxapp.war/WEB-INF/config/user/spring). The
Spring bean must contains a reference to a Hibernate session factory even if your service implementation
class does not use Hibernate. The session factory allows DAO support code to reference the transaction
manager.

<bean id="mySampleServiceBean"
 class="com.percussion.pso.service.xact.impl.SampleServiceImpl">
 <property name="sessionFactory" ref="mySessionFactory" />
</bean>

You can include any additional properties required by your implementation class.

The beans file must also contain a Hibernate session factory. The standard way to include a Hibernate
session factory is to use PSDatasourceSessionFactoryBean. This class automatically references the
Rhythmyx internal session factory.

<bean id="mySessionFactory"

 class="com.percussion.services.datasource.PSDatasourceSessionFactoryB
ean">
 <!-- if your service uses any hibernate mappings, you can add them
here-->
</bean>

If your implementation class uses Hibernate, you many need to add further mappings to the session
factory. Not that the ID used for this bean is not important, but it must match the reference in the
implementation bean. Bean IDs can follow any naming convention, except that they must not being with
the string "sys_"; that string is reserved for IDs of system objects.

Service Locator
The service locator allows classes outside of the server's Spring infrastructure (including JSP pages and
servlets defined in the User Dispatcher Servlet context) to find your service. Create a services locator by
extending PSBaseServiceLocator:

public class SampleServiceLocator extends PSBaseServiceLocator
 {
 public static SampleService getSampleService()
 {
 return (SampleService) getBean(SAMPLE_SERVICE_BEAN_
 }
//this must match the ID of the bean in the xml file.
public static final String SAMPLE_SERVICE_BEAN_NAME
="mySampleServiceBean";
}

158 Rhythmyx Technical Reference Manual

The bean name constant can be any value, but it must match the ID of the bean in the XML file used to
configure the Spring bean.

The name of the static "get" method should match the name of the service.

Deploying a Transaction Service
The recommended method of deploying code in Rhythmyx is to build a JAR file and add it to the
directory <Rhythmyxroot/AppServer/server/rx/deploy/rxapp.ear/rx-
app.war/WEB-INF/lib. Beans files, as noted earlier, should be added to the directory
<Rhythmyxroot/AppServer/server/rx/deploy/rxapp.ear/rx-app.war/WEB-
INF/config/user/spring/.

When you restart the server, the server will automatically load these files. The first time you restart,
review the server log carefully for any references to the server bean and server implementation class.
Major errors may cause exceptions; if severe enough, these exceptions may prevent the server from
starting. More subtle errors may result in the service not being loaded.

To call the services, call the services locator:
SampleService sample = SampleServiceLocator.getSampleService();

The example code package includes a test JSP that illustrates a call to a transaction service.

Extending Java Server Faces Page Flows
Rhythmyx uses Apache MyFaces.

To add a new JSF page flow to Rhythmyx, add a new JSF configuration to the file
<Rhythmyxroot>/AppServer/server/rx/deploy/rxapp.ear.rxapp.war/WEB-
INF/config/user/faces/faces-config.xml. The file
<Rhythmyxroot>/AppServer/server/rx/deploy/rxapp.ear.rxapp.war/WEB-
INF/faces-config.xml should not be modified.

The names of system JSF beans begin with the prefix "sys_". This prefix should not be used when
naming custom JSF beans. However, best practice is to use a consistent naming convention for your
project beans. For information about naming conventions, see "Design Object Naming Conventions" in
the Rhythmyx Implementation Guide.

File Locations
Any classes required by a custom implementation should be added to the directory
<Rhythmyxroot>/AppServer/server/rx/deploy/rxapp.ear.rxapp.war/WEB-
INF/classes.

Any .jar files required by a custom implementation should added to the directory
<Rhythmyxroot>/AppServer/server/rx/deploy/rxapp.ear.rxapp.war/WEB-
INF/lib.

The working directory of the Rhythmyx server installation is the root directory, but the use of a specific
working directory in future versions of Rhythmyx is not guaranteed. Use the service IPSRhythmyxInfo to
determine the location of the root directory if your custom implementation needs to refer to files not
located in the directory rxapp.war.

 Chapter 7 System Issues 159

NOTE for upgraded systems: Custom implementations in systems upgraded from Rhythmyx Version 5.7
and earlier should be updated to use the service IPSRhythmyxInfo to refer to files. Reliance on a working
directory is deprecated.

Rhythmyx Request Context
To access data in the Rhythmyx request context, use the methods of the interface IPSRequestContext. In
custom JSPs and servlets, you can access the request context by calling
ServletRequest.getAttribute("RX_REQUEST_CONTEXT"):

 for JSPs, ServletRequest is available from the implicit pageContext object;
 for servlets, the HttpServletRequest subclass is provided to the handleRequest()

method of the Controller interface.

The body of the request is not parsed.

If you need to access an XML document or HTML parameters within Rhythmyx (such as for a Rhythmyx
XML application), use the method IPSRequestContext.parseBody(). If the body of the request
is an XML document, it will then be available by calling
IPSRequestContext.getInputDocument. If the body of the request is a multi-part form, each
field is converted to an HTML parameter in the request context.

Query string parameters and non-multipart form parameters are automatically parsed by JBoss. You can
access them by calling either ServletRequest.getParameterMap() or
IPSRequestContext.getParameter().

Rhythmyx Server Information
Information about the Rhythmyx server can be accessed using the method
IPSRhythmyxInfo.getProperty(Key). The following keys can be specified:

Key Value Returned Data

ROOT_DIRECTORY The root directory of the Rhythmyx server.

LISTENER_PORT The HTTP listener port of the Rhythmyx server (9992 by default).

LISTENER_SSL_PORT The HTTPS port of the Rhythmyx server.

VERSION The installed version of Rhythmyx, as a string.

Integrating Content Explorer Action Menu Entries
Action Menu entries define HTML requests that initiate processing. These HTML requests specify the
processing the server should perform (such as retrieving a Content Item, updating edits to it, or performing
a Workflow Transition on it). HTML requests are processed by servlets, JSPs, or Rhythmyx applications.

JSPs and servlets should be used to add custom user interfaces. Requests to servlets and JSPs use standard
URLs for those implementations, for example:

/Rhythmyx/user/apps/sampleapplication/sampleurl
/Rhythmyx/user/pages/samplepage.jsp

160 Rhythmyx Technical Reference Manual

Rhythmyx Content Editors are accessed as applications. Otherwise, Rhythmyx applications should be
used when specific Rhythmyx functionality is needed.

Requests to Applications
The general format of requests to Rhythmyx applications is:
http://server:port/rxroot/approot/resource.xml?parameters

Where:

server is the hostname or IP address of the machine where the Rhythmyx server is running.

port is the port number in which the Rhythmyx server listens for HTTP requests.

rxroot is the URL root of the Rhythmyx server; for example, the default root is /Rhythmyx.

approot is the name of the Rhythmyx application you want to use to process the request.

resource is the name of the resource you want to use to process the request (or a file in the
application directory

xml is the extension used for the request. In the majority of cases, these requests are internal and
should use the extension "xml".

parameters is a list of parameters used by the specified resource. The set of parameters used in a
request are determined by the parameters required by the resource, which falls into one of four
categories:

 query

 update

 Content Editor

 non-text

Query Request Parameters
The optional and required parameters of a query resource are determined by the parameters specified
when defining the resource itself.

 Chapter 7 System Issues 161

Update Request Parameters

Parameter Name Description Allowed Values

DBActionType Specifies the database action.

If all entries in the submitted
XML document use the same
action, you can supply this
parameter as an HTML
parameter. Otherwise, you must
provide an ActionType for each
row.

Value Description

INSERT Tells the
database
server to
create a new
row

UPDATE Tells the
database
server to
update an
existing row;
a key must be
provided.
Depending on
the settings of
the resource,
this command
may also
insert a row if
it does not
already exist.

DELETE Remove the
row specified
by the
supplied key

QUERY Not generally
useful for
Update
resources.

Others Other parameters as determined
by resource design.

Determined by resource
design.

Content Editor Request Parameters
The only parameter available for Content Editor resources is sys_command, which can take the
following values:

Value Result

edit (see "Edit Command" on page 162) Opens the specified Content Item so a user can
change it.

preview (see "Preview Command" on page 164) Assembles the specified Content Item using the
specified Template.

162 Rhythmyx Technical Reference Manual

Value Result

modify (see "Modify Command" on page 167) Adds a new Content Item to the Repository or
updates an existing Content Item in the Repository.

workflow (see "Workflow Command" on page 169) Changes the current State of the specified Content
Item.

binary (see "Binary Command" on page 169) Retrieves a non-text Content Item.

clone (see "Clone Command" on page 170) Creates a duplicate of the specified Content Item.

relate (see "Clone Command" on page 170) Creates or modifies a Relationship.

The value of the sys_command parameter determines the additional parameters required. Note that
some values of sys_command require subcommands in the format:

http://server:port/rxroot/approot/resource.xml?sys_command/subcommand?p
arameters

Edit Command
The edit command opens the specified Content Item so a user can change the Item. It takes the
following parameters:

Parameter
Name

Description Allowed Values

sys_contentid The ID of the
Content Item to
be edited. If
this value is not
specified, the
server returns
an empty results
set.

Integers

sys_revision The ID of the
Revision of the
Content Item to
return.

Integers

 Chapter 7 System Issues 163

Parameter Description Allowed Values
Name

sys_pageid Specifies
whether to
retrieve data for
all fields on the
Content Item or
for a specific
child table.
This parameter
is optional. If
not included,
the server
returns all fields
(as if the value
of the parameter
were 0).

Value Description

0 Return all Content Item fields, including all child
table entries.

1 Return the summary of the first child table in the
Content Item (in the order the child tables are
specified in the Content Item definition); or all child
entries for the first child table.

2 Return the editing information for a specific row in
the first child table in the Content Item (in the order
the child tables are specified in the Content Item
definition). The row to return is specified by the
sys_childrowid parameter.

3 Return the summary of the second child table in the
Content Item (in the order the child tables are
specified in the Content Item definition); or all child
entries for the second child table.

4 Return the editing information for a specific row in
the second child table in the Content Item (in the
order the child tables are specified in the Content
Item definition). The row to return is specified by
the sys_childrowid parameter.

And so on. Odd values for this parameter specify to
return the summary or all child entries of a table (1 is the
first table, 3 is the second table, 5 is the third table, etc.).
Even values specify to return a specific row from a child
table (2 is the first table, 4 is the second table, 6 is the
third table). The rule essentially is to return a specific
row from a child table, use the value 2x, where x is the
count of the table for which you want to return the row; to
return the entire table, use the value 2x-1.

164 Rhythmyx Technical Reference Manual

Parameter Description Allowed Values
Name

sys_view Specifies the set
of fields to
display,
metadata,
content data, or
a single field.

Value Description

sys_All Display all fields, including all
child entries.

sys_ItemMeta Displays only system fields.
For local and shared fields, the
server sets
displayType=”sys_hidden”.

sys_Content Displays only content fields
(fields defined in the local and
shared definition files). For
system fields, the server sets
displayType=”sys_hidden”.

sys_SingleField:<fieldname> Displays a single field,
specified by <fieldname>. For
all other fields in the Content
Type, the server sets
displayType=”sys_hidden”

sys_childrowid Specifies the
row in a child
table to display.
Used when the
value of
sys_pageid is an
even integer;
otherwise, omit.

Integers

The server returns all fields of the specified Content Item. If the extension is XML, the response result
must conform to the sys_ContentEditor.dtd (rxroot/DTD/sys_ContentEditor.dtd).

Preview Command
This command displays an assembled Content Item in preview mode. The value of the isReadOnly
parameter for all fields is always true when the command is preview.

Parameter
Name

Description Allowed Values

sys_contentid The ID of the
Content Item to
be edited. If
this value is not
specified, the
server returns
an empty results
set.

Integers

 Chapter 7 System Issues 165

Parameter Description Allowed Values
Name

sys_revision The ID of the
Revision of the
Content Item to
return.

Integers

sys_pageid Specifies
whether to
retrieve data for
all fields on the
Content Item or
for a specific
child table.
This parameter
is optional. If
not included,
the server
returns all fields
(as if the value
of the parameter
were 0).

Value Description

0 Return all Content Item fields, including all child table
entries.

1 Return the summary of the first child table in the Content
Item (in the order the child tables are specified in the
Content Item definition); or all child entries for the first
child table.

2 Return the editing information for a specific row in the
first child table in the Content Item (in the order the child
tables are specified in the Content Item definition). The
row to return is specified by the sys_childrowid
parameter.

3 Return the summary of the second child table in the
Content Item (in the order the child tables are specified in
the Content Item definition); or all child entries for the
second child table.

4 Return the editing information for a specific row in the
second child table in the Content Item (in the order the
child tables are specified in the Content Item definition).
The row to return is specified by the sys_childrowid
parameter.

And so on. Odd values for this parameter specify to
return the summary or all child entries of a table (1 is the
first table, 3 is the second table, 5 is the third table, etc.).
Even values specify to return a specific row from a child
table (2 is the first table, 4 is the second table, 6 is the
third table). The rule essentially is to return a specific
row from a child table, use the value 2x, where x is the
count of the table for which you want to return the row; to
return the entire table, use the value 2x-1.

166 Rhythmyx Technical Reference Manual

Parameter Description Allowed Values
Name

sys_view Specifies the set
of fields to
display,
metadata,
content data, or
a single field.

Value Description

sys_All Display all fields, including all
child entries.

sys_ItemMeta Displays only system fields.
For local and shared fields, the
server sets
displayType=”sys_hidden”.

sys_Content Displays only content fields
(fields defined in the local and
shared definition files). For
system fields, the server sets
displayType=”sys_hidden”.

sys_SingleField:<fieldname> Displays a single field,
specified by <fieldname>. For
all other fields in the Content
Type, the server sets
displayType=”sys_hidden”

sys_childrowid Specifies the
row in a child
table to display.
Used when the
value of
sys_pageid is an
even integer;
otherwise, omit.

Integers

The server returns all fields of the specified Content Item. If the extension is XML, the response result
must conform to the sys_ContentEditor.dtd (rxroot/DTD/sys_ContentEditor.dtd).

 Chapter 7 System Issues 167

Modify Command
This command modifies a Content Item or one of its fields.

Parameter
Name

Description Allowed Values

DBActionType Specifies the database action
to take.

NOTE: IF you specify a
value other than those listed
under “Allowed Values”, no
database operation occurs.

Value Description

INSERT Inserts a new
Content Item with
the specified
values. Creates a
new contentid and
revision id.

UPDATE Modifies an
existing Content
Item. When using
this value, the
parameters
sys_contentid and
sys_revision are
required.

SEQUENCE_DECREMEN
T

Decrements the
sortrank of the
specified child row.
This Value is
ignored if the value
of the Allow user to
reorder entry field
for the Content
Editor is false.

SEQUENCE_INCREMENT Increments the
sortrank of the
specified child row.
This Value is
ignored if the value
of the Allow user to
reorder entry field
for the Content
Editor is false.

sys_contentid The ID of the Content Item to
be updated. Required if
DBActionType=UPDATE.

Integers

sys_revision The revision ID of the
Content Item to be updated.
Required if
DBActionType=UPDATE.

Integers

sys_childid The ID of the child table of
the Content Item to be
updated.

Integers

168 Rhythmyx Technical Reference Manual

Parameter Description Allowed Values
Name

sys_childrowid The row in the child table to
be updated.

Integers

fieldname The name of the field to be
updated.

Alphanumeric string of the updated value of the field.

fieldname_clear Used for binary fields.
Removes the existing value of
the field.

Simply leaving the upload
field (which specifies the path
to the binary object to
upload), does not clear the
binary object. You must use
the “_clear” suffix with the
field name to clear the binary
object.

This parameter does not take
a value. For example, to clear
a field called imgbody, you
would include this parameter
as imgbody_clear.

Does not take a value.

 Chapter 7 System Issues 169

Workflow Command
The workflow command performs a Workflow Action on a Content Item. Workflow Actions fall into two
categories

 Transitional requests perform the stated Transition, changing the Workflow State of the
Content Item.

 Non-transitional requests check out or check in the Content Item, but do not change the Item’s
State.

Parameter
Name

Description Allowed Values

WFAction Specifies the database action to
take. Value Description

checkout Non-Transitional action; checks
out the specified Content Item.

checkin Non-Transitional action; checks
in the specified Content Item.

forcecheckin Non-Transitional action; checks
in the specified Content Item,
even if the Item is currently
checked out by a user.

transition or
trigger name

Transitional action. Requires the
sys_transitionid parameter to
specify the Transition to
perform.

sys_contentid The ID of the Content Item on
which to perform the Workflow
Action.

Integers

sys_revision The revision ID of the Content
Item to be updated.

Integers

sys_transitionid The ID of the Transition to
perform. Not required for non-
transitional actions.

Integers

commenttext Comment for the Workflow
request. May be empty.

Alphabetic string of the comment on the Transition.

Binary Command
Equivalent to a non-text request. See the discussion of non-text requests for details.

Parameter Name Description Allowed Values

sys_submitname Name of the Binary field. Alphanumeric string.

sys_contentid ID of the Content Item. Integers

sys_revision ID of the Revision. Integers

170 Rhythmyx Technical Reference Manual

Parameter Name Description Allowed Values

sys_childrowid ID of the child row; required if
the binary object is stored in a
child table.

Integers

Clone Command
The clone command creates a duplicate of the specified Content Item. The response document contains
the same data as the cloned Item, which conforms to the sys_ContentEditor.dtd.

Parameter Name Description Allowed Values

sys_contentid ID of the Content Item. Integers

sys_revision ID of the Revision. Integers

sys_wfAction Workflow Action to perform on
the newly-created Content Item.
The only valid value for this
parameter is checkin. If this
parameter has any other value,
or if no value is specified for
the parameter, the checkin
action is not performed on the
newly-created Content Item.

checkin

Relate Command
The relate command constructs or modifies a Relationship. The relate command can take subcommands:

Subcommand Description

create If the command specifies locators for both an Owner and a Dependent, this
subcommand creates a new Relationship of the specified type between the
specified Content Items if no Relationship of that type already exists between the
two Items. If a Relationship of the specified type already exists between the
specified Content Items, the Relationship is updated.

If no Dependent locator is specified and the Relationship configuration allows
cloning, the Owner is cloned and a Relationship of the specified type is created
between the owner and the new clone.

insert If the command specifies locators for both an Owner and a Dependent, this
subcommand creates a new Relationship of the specified type between the
specified Content Items if no Relationship of that type already exists between the
two Items.

If no Dependent locator is specified and the Relationship configuration allows
cloning, the Owner is cloned and a Relationship of the specified type is created
between the owner and the new clone.

query Retrieves the specified Relationships.

 Chapter 7 System Issues 171

Note that you can use the relate command without a subcommand. The Rhythmyx server treats such a
request as if it included the create subcommand.

All subcommands use the same set of parameters.

Parameter Name Description Allowed Values

sys_relationshiptype Specifies the type of
relationship to create or
modify.

Any Relationship type (for example, Active
Assembly or Translation – Mandatory)
defined in the system

sys_contentid Specifies the ID of the Owner
Content Item in the
Relationship.

Integers

sys_revision Specifies the Revision of the
Owner Content Item in the
Relationship.

Integers

sys_dependentid Specifies the ID of the
Dependent Content Item in
the Relationship.

Integers

sys_dependentrevision Specifies the Revision of the
Dependent Content Item in
the Relationship.

Integers

Non-Text Request Parameters
The parameters of a non-text resource are determined by the design of the resource, but must include at
least the search key that specifies the row to return.

Spring Configurations
To add Spring beans to Rhythmyx, add Spring bean configuration files to the Spring configuration
directory:
<Rhythmyxroot>/AppServer/server/rx/deploy/rxapp.ear/rxapp.war/WEB-
INF/config/user/spring/. During initialization, the server loads any Spring beans configuration
files found in this directory.

Note that beans added to this configuration are added to the server's Spring context. The user dispatcher
servlet also has a separate Spring context. Beans added to one context are not available in the other
context.

The names of system Spring beans begin with the prefix "sys_". This prefix should not be used when
naming custom Spring beans. However, best practice is to use a consistent naming convention for your
project beans. For information about naming conventions, see "Design Object Naming Conventions" in
the Rhythmyx Implementation Guide.

172 Rhythmyx Technical Reference Manual

Alternate Hibernate Session Connections to the
Rhythmyx Datasource
Rhythmyx connects to the Repository using a default Hibernate session that uses the Rhythmyx
datasource. You can also configure custom connections to this datasource.

To connect to the Rhythmyx datasource programmatically, use the method
PSConnectionHelper.getHibernateInfo(PSConnectionInfo info)where info is the
name of the datasource connection for which you want to return properties. The object returned includes
the following properties:

Property Description

hibernate.connection.datasource Name of JNDI datasource.

hibernate.default_catalog Database name, if specified.

hibernate.default_schema Schema or origin, if specified.

hibernate.dialect Hibernate dialect used to connect to the database, based on the driver
configured in the JNDI datasource.

Additional properties defined in the Rhythmyx datasource are also returned.

If you need to create a different Hibernate session for a Spring bean, use
PSDatasourceSessionFactoryBean to create a new session factory for your bean. For details, see the
Javadoc for this method. Note that Hibernate mappings cannot be specified with wildcards. The Javadoc
for PSDatasourceSessionFactoryBean describes this issue, or see the jboss.org Web site for details.

Logging for Custom Implementations
Custom implementations should use the Apache commons logging interfaces to perform logging.
Logging output from this interface will automatically use the log4j configuration defined in the Rhythmyx
server. For additional details about logging, see Configuring Logging (see page 178).

 Chapter 7 System Issues 173

Defining Non-Rhythmyx Datasources
If your implementation needs a datasource, you should configure it in the Rhythmyx Server Administrator
(see "Maintaining Datasources"). If you need to configure options in your datasource that are not
available in the Rhythmyx Server Administrator, you can create another JBoss datasource file and deploy
it to the directory <Rhythmyxroot/>/AppServer/server/rx/deploy and add the new
datasource to it. The new datasource will be picked up the next time the server is restarted. These
datasources are not available for use in Rhythmyx applications.

174 Rhythmyx Technical Reference Manual

Security
This section describes security issues in Rhythmyx.

Rhythmyx, JBoss, and JAAS
Rhythmyx implements the security model of its container, JBoss. Like many J2EE application servers,
JBoss uses Java Authentication and Authorization Service (JAAS). By default, Rhythmyx uses its own
login module, which uses the security providers shipped with Rhythmyx. JBoss includes a number of
login modules that you can use instead, or you can implement your own login module. (For details about
configuring these modules, see Rules for Custom Login Modules.)

Implementing Custom Authentication
If you need to implement a custom login module, you will need to configure it, and you may need to
implement customer Role Catalogers, Subject Catalogers, or both Role and Subject Catalogers. This
section describes how to configure custom login modules correctly and how to implement custom Role
and Subject catalogers.

Rules for Custom Login Modules

If you add a new login module, you must configure it in the file <Rhythmyxroot>/AppServer/
server/rx/conf/login-config.xml. Changes to this file require a server restart to take effect.

If the Rhythmyx entry in this file is removed or commented out, any security providers configured in
Rhythmyx will be disabled.

If you cannot use LDAP to return Role and Role Member data, and the data cannot be configured
manually in the Role or Member registration in the Rhythmyx Server Administrator, you will need to
implement a custom Role cataloger, a custom subject cataloger, or both. Role Catalogers return Role data,
including lists of Role Members and Role properties. Subject catalogers return data about the individual
Members of the Roles. For details about Role and Subject catalogers, see "Role and Subject Catalogers".

To return Roles correctly, the Rhythmyx login module should be configured last in the configuration file.
The value of the flag attribute of the Rhythmyx login module must be sufficient, while the value of this
attribute for all other modules must be optional.

If you want to return Role and subject data from all Role and Subject catalogers, do not configure any
custom login module to return a list of Roles to Rhythmyx. Rhythmyx will then query all Role and
subject catalogers once authentication processing is complete. (If any login modules is configured to
return Role and Subject data, Rhythmyx will return Role and Subject data from that login modules and
from the default rxmaster Backend Table Security Provider.)

If you use a <meta> tag to override the default content type, character encoding on the page must be UTF-
8.

 Chapter 7 System Issues 175

Role and Subject Catalogers
You do not need to implement a custom Role cataloger or subject cataloger when you implement a custom
login module if you can use LDAP to retrieve Role and Member data, or if you can configure the data
manually for the Roles and Members in the Server Administrator. If neither of these cases is true, you
will need custom Role and subject catalogers.

Role catalogers are Rhythmyx extensions that return Role data, including the list of Role Members and
Role properties. These extensions implement the interface IPSRoleCataloger. Subject catalogers are
Rhythmyx extensions that return data for specific Members of Roles. These extensions implement the
interface IPSSubjectCataloger.

The cataloger class requires a no argument constructor. The names of any properties must begin with
lower-case letters. Properties require a setter method following Java Bean patterns. The name of the
setter method must be camel-cased.

The cataloger must be registered on the Rhythmyx Server Administrator (see "Maintaining Catalogers" in
the Rhythmyx Server Administrator Help) , with all properties specified. The server must be restarted to
initialize the cataloger extension.

Implementing Custom Login Pages
Rhythmyx provides a default login page, including both login and logout functionality, but you can
implement your own login page if you prefer. To implement a custom login page, add the following files
to <Rhythmyxroot>/AppServer/ server/rx/deploy/rxapp.ear/rxapp.war/:

 login.jsp
This file must include the following:

 A field called j_username, in which the user enters the login name. The value
should be defined with the
tag<%= request.getParameter("j_username") %> to allow the value to
be restored after a failed attempt.

 A field called j_password, in which the user enters the password. The value
should be defined with the tag
<%= request.getParameter("j_password") %> to allow the value to be
restored after a failed attempt.

The form should not specify an action so it is submitted for login again after an error.
 error.jsp

This file is optional. Include it if you want to display the error message from the server
explaining why login failed. To display this message, include the tag JSP tag
<%= request.getParameter("j_error") %> .

This file should also include a way to return to the login page (such as a a link to ../login or
or a form that posts back to the login servlet by not specifying an action.

Note that you can also display error messages on the login form by including the j_error
field.

176 Rhythmyx Technical Reference Manual

 logout.jsp
This file must make a request to /Rhythmyx/logout (or a relative path based on the
location from which /Rhythmyx/logout is called).

Security Extensions
Rhythmyx provides for three types of extensions for security:

 Role Catalogers
 Subject Catalogers
 Password Filters

For details about Role and Subject Catalogers, see Role and Subject Catalogers. Note that no Role or
Subject Cataloger extensions are shipped with Rhythmyx.

Password Filters
A Password Filter extension is used when passwords are stored in encrypted form. A Password Filter
encrypts the password entered by the user so it can be compared to the encrypted password stored in the
security provider.

A Password Filter extension must implement the interface IPSPasswordFilter.

IMPORTANT: A Password Filter extension must provide a meaningful no arguments constructor that
will produce a working filter.

sys_DefaultPasswordFilter

Context:
Java/global/percussion/filter/

Description:
This exit takes a plain text string (a password) and encrypts it for a Rhythmyx security provider.

Class name:
com.percussion.filter.DefaultPasswordFilter

Interface:
com.percussion.security.IPSPasswordFilter

Parameters:
No user-supplied parameters. The server automatically supplies the password to the extension.

 Chapter 7 System Issues 177

Security for Custom Web Applications
Custom web applications implemented as Rhythmyx JSPs or dispatched Spring MVC Controllers use the
security configured for Rhythmyx. No additional security configuration is required for these applications.
For details about configuring these applications, see Implementing Custom Java Server Pages and
Servlets.

Security must be configured for non-Rhythmyx customizations. Configure security for each web
application in the file <Rhythmyxroot/AppServer/server/rx/deploy/rxapp.ear/rx-
app.war/WEB-INF/config/user/security/user-security-conf.xml. Entries in this
file define the authentication requirement for each custom web application. Each web application is
specified in a path node. The value of this node is the path to the web application for which you are
defining security. The authType attribute of the path node specifies the type of authentication used
for the web application. Options include form, basic, and anonymous.

The path nodes are nested in securityConfiguration nodes. The securityConfiguration
node specifies whether the web applications contained in the node require secure login using SSL. If the
value of the forceSecureLogin attribute is yes, authentication data will be transmitted using SSL,
otherwise it is transmitted unencrypted via HTTP. A default securityConfiguration node is
included with a forceSecureLogin attribute whose value is no.

178 Rhythmyx Technical Reference Manual

Configuring Logging
Rhythmyx uses Log4j to provide logging functionality. The Log4j configuration file is stored in the
directory <Rhythmyxroot>/AppServer/server/rx/conf/log4j.xml. This file includes
extensive comments describing the default configuration.

For additional details about Log4j, see http://logging.apache.org/log4j.

http://logging.apache.org/log4j

 179

C H A P T E R 8

Extensions

Rhythmyx extensions allow you to modify or enhance the functionality available in the base product by
adding your own functionality. In many cases, Rhythmyx functionality is based on extensions, so you can
customize the system to produce the behavior you need for your implementation.

This chapter outlines the general requirements for all extensions and explains how to register them. Two
consolidated references to extensions are provided, one by type, the other alphabetical.

180 Rhythmyx Technical Reference Manual

General Requirements of Extensions
All extensions must implement an interface, either IPSExtension or, in most cases, a more specialized
interface. The interface required for each extension is documented with that extension type.

All extensions must be registered in the system so they can be initialized when the system starts. In most
cases, the server must be restarted to initialize an extension. For details about registering an extension, see
Registering an Extension (see page 181).

When designing and implementing an extension, evaluate its potential impact on performance. In most
cases, the simplest way to gauge this impact is to consider how frequently it will be called. For example, a
JEXL function extension is likely to be called whenever the associated Template is assembled, whether
for preview or when publishing; when publishing, the function could be called hundreds, even thousands
of times. A poorly designed and implemented extension can thus have a significant impact on
performance.

IMPORTANT: Rhythmyx extensions must be thread safe. For information about thread safety, consult
any standard Java reference.

 Chapter 8 Extensions 181

Registering an Extension
A Rhythmyx extension can be implemented in either Java or JavaScript, but in Rhythmyx Version 6.0 and
later, Java extensions are most common.

A Java extension usually has two sets of parameters:

 Initialization parameters are used to initialize the extension. You must specify both the name
and the value of initialization parameters when registering the extension.

 Runtime parameters define data input to the parameter when it is called. You must specify
the name and data type of these parameters. Ideally, when you register the extension you
should also include a description of the parameter to explain what it does, what values are
valid, and any default values.

The registration should also note any files (such as a properties file) or Rhythmyx applications needed to
support the processing of the extension. Note that these supporting resources must exist before you can
add them to the extension registration.

To register an extension:

1 In the Rhythmyx Workbench, go to the System view and select the Folder to which you want
to add the extension registration.

2 In the Menu bar, choose File > New.

182 Rhythmyx Technical Reference Manual

The Rhythmyx Workbench displays the New Extension wizard.

Figure 31: New Extension wizard

3 Enter the Extension name and, optionally, Description.

4 Leave Java selected in the Handler field.

5 To add a supported interface:

a) In the Supported interfaces drop list, select the interface required for your extension.

b) Click the [+] button next to the field to add the supported interface.

c) Repeat for each supported interface you want to add to the extension.

6 Enter the Class name.

7 Click the [Finish] button.

 Chapter 8 Extensions 183

The Rhythmyx Workbench displays the Extension editor.

Figure 32: Extension Registration Editor

8 To add initialization parameters to the extension registration:

a) Click the [Additional Parameters] button.

184 Rhythmyx Technical Reference Manual

The Rhythmyx Workbench displays the Additional Parameters dialog.

Figure 33: Additional Parameters dialog

b) For each initialization parameter in your extension, enter the Name of the parameters and
its Value in the same row.

c) When you have entered all initialization parameters, click the [OK] button to save
initialization parameters.

9 Add runtime parameters to the Parameters table on the Extensions editor. For each parameter,
enter the Name and the data Type. Optionally, enter a Description.

10 In Required files, enter any number of files that the extension uses. Required files are
generally .class, .jar, or .zip files. A required file might, for example, specify acceptable
formats for dates or valid entries for a field.

a) Enter the path to the file in the Required files field, or use the browse button to find the
file.

b) Click the [+] button next to the Required files field to add the path to the list of required
files.

c) Repeat for each required file.

11 In Required applications, choose all of the applications that use the extension. If you fail to
choose an application that uses the extension, you will not effect the running of the extension;
however, the Rhythmyx Multi-Server Manager will not automatically package the extension
with the application. For more information see the Rhythmyx Multi-Server Management
document:

a) In the Required applications drop list, select the Rhythmyx application required for your
extension.

b) Click the [+] button next to the field to add the application.

c) Repeat for each application you want to add to the extension.

12 In the Button bar of the Rhythmyx Workbench, click the save button.

 Chapter 8 Extensions 185

Extensions Reference by Type

Assembly Plugins

binaryAssembler (see page 99)

databaseAssembler (see page 99)

debugAssembler (see page 100)

dispatchAssembler (see page 100)

legacyAssembler (see page 101)

velocityAssembler (see page 101)

Content List Generators

sys_PublishedSiteItems (see page 126)

sys_SearchGenerator (see page 128)

sys_SelectedItemsGenerator (see page 127)

Field Validations

sys_ValidateDateRange (see page 20)

sys_ValidateJexlFieldExpression (see page 20)

sys_ValidateNumberRange (see page 21)

sys_ValidateRequiredField (see page 22)

sys_ValidateStringLength (see page 22)

sys_ValidateStringPattern (see page 23)

Field Input Transformers

sys_MapInputValue (see page 24)

sys_NormalizeDate (see page 24)

sys_OverrideLiteral (see page 25)

sys_Replace (see page 25)

sys_ToHash (see page 26)

sys_ToLowerCase (see page 27)

sys_ToProperCase (see page 27)

sys_ToUpperCase (see page 28)

sys_TranslateJexlExpressionValue (see page 28)

186 Rhythmyx Technical Reference Manual

sys_TrimString (see page 29)

Field Output Transformers

sys_DateFormat (see page 30)

sys_DateFormatEx (see page 31)

sys_FormatDate (see page 31)

sys_MapOutputValue (see page 32)

Item Filter Rules

sys_filterByFolderPaths (see page 145)

sys_filterByPublishableFlag (see page 146)

sys_filterBySiteFolder (see page 146)

Java Expression Language (JEXL) Functions

Assembly Utilities

Code and Decode Utilities (see page 134)

Conditional Processing Utilities (see page 135)

Database Utilities (see page 136)

Document Utilities (see page 136)

Extension Utilities (see page 137)

GUID Utilities (see page 137)

Internationalization Utilities (see page 138)

Keyword Utilities (see page 135)

Link Utilities (see page 138)

Location Utilities

Navigation Utilities (see page 140)

Session Utilities (see page 142)

String Utilities (see page 142)

Location Scheme Generators

sys_JexlAssemblyLocation (see page 148)

Slot Content Finders

sys_AutoSlotContentFinder (see page 102)

sys_LegacyAutoSlotContentFinder (see page 102)

sys_ManagedNavContentFinder (see page 104)

 Chapter 8 Extensions 187

sys_RelationshipContentFinder (see page 104)

sys_TranslationContentFinder (see page 105)

Template Expanders

sys_ListTemplateExpander (see page 127)

sys_SiteTemplateExpander (see page 129)

Workflow Actions

sys_createTranslations (see page 113)

sys_PublishContent (see page 114)

sys_TouchParentItems (see page 116)

188 Rhythmyx Technical Reference Manual

Alphabetical Reference to Rhythmyx
Extensions

Assembly Utilities (see page 133)

binaryAssembler (see page 99)

Code and Decode Utilities (see page 134)

Conditional Processing Utilities (see page 135)

databaseAssembler (see page 99)

Database Utilities (see page 136)

debugAssembler (see page 100)

dispatchAssembler (see page 100)

Document Utilities (see page 136)

Extension Utilities (see page 137)

GUID Utilities (see page 137)

Internationalization Utilities (see page 138)

Keyword Utilities (see page 135)

legacyAssembler (see page 101)

Link Utilities (see page 138)

Location Utilities (see page 139)

Navigation Utilities (see page 140)

Session Utilities (see page 142)

String Utilities (see page 142)

sys_AutoSlotContentFinder (see page 102)

sys_createTranslations (see page 113)

sys_FormatDate (see page 31)

sys_filterByFolderPaths (see page 145)

sys_filterByPublishableFlag (see page 146)

sys_filterBySiteFolder (see page 146)

sys_JexlAssemblyLocation (see page 148)

sys_LegacyAutoSlotContentFinder (see page 102)

sys_ListTemplateExpander (see page 127)

sys_ManagedNavContentFinder (see page 104)

 Chapter 8 Extensions 189

sys_MapInputValue (see page 24)

sys_MapOutputValue (see page 32)

sys_NormalizeDate (see page 24)

sys_PublishContent (see page 114)

sys_RelationshipContentFinder (see page 104)

sys_RelationshipContentFinder (see page 104)

sys_SearchGenerator (see page 128)

sys_SelectedItemsGenerator (see page 127)

sys_SiteTemplateExpander (see page 129)

sys_TouchParentItems (see page 116)

sys_TranslateJexlExpressionValue (see page 28)

sys_TranslationContentFinder (see page 105)

sys_TrimString (see page 29)

sys_ValidateDateRange (see page 20)

sys_ValidateJexlFieldExpression (see page 20)

sys_ValidateNumberRange (see page 21)

sys_ValidateRequiredField (see page 22)

sys_ValidateStringLength (see page 22)

sys_ValidateStringPattern (see page 23)

velocityAssembler (see page 101)

190 Rhythmyx Technical Reference Manual

Legacy Extension Reference
This section documents extensions that were shipped with earlier versions of Rhythmyx. These
extensions are installed to provide backward compatibility in upgraded systems. In general, when
implementing Rhythmyx Version 6.0, the newer extensions documented in Extensions Reference by Type
(see page 185) and Alphabetical Reference to Extensions (see page 188) should be used.

Result Document Processing

rxs_SiteFolderContentListBuilder

Name
rxs_SiteFolderContentListBuilder

Context
global/percussion/fastforward/sfp/

Description
This exit builds a Content List for Site Folder Publishing from Content Items in a Content Explorer Site
Folder tree. The exit’s parameters let users customize which Content Items are selected for publishing.

Class name
com.percussion.fastforward.sfp.PSSiteFolderContentListExit

Interface
com.percussion.extension.IPSResultDocumentProcessor

Parameters

Name Data Type Description

filenameContext string Delivery location for Content
Items. By default, takes the value
of the locationCtx parameter in
the Content List URL. If a
delivery location is not specified,
Rhythmyx delivers to the URL in
the Assembly Context.

deliveryType string Type of delivery. Options are
filesystem or ftp. Takes the value
of the delivery parameter in the
Content List URL if specified.
Default value is ftp.

 Chapter 8 Extensions 191

Name Data Type Description

isIncremental string Incremental publishing flag.
Options are y or n. Takes the
value of the inc parameter in the
Content List URL if specified.
Default value is n.

contentValidValues string Indicates in which States it is
valid to publish this content. For
more information, see "Extending
Publishable States" and "Edit
State Page" in the online CMS
Help. Takes the value of the
valid parameter in the Content
List URL if specified.

MaxRowsPerPage String Specifies the maximum number
of Content Items to appear on a
single page of the Content List.
Default is –1 (unlimited number
of Content Items).

rxs_SiteFolderContentListBulkBuilder

Name
rxs_SiteFolderContentListBulkBuilder

Context
/global/percussion/fastforward/sfp/

Description
This exit builds a Content List for Site Folder Publishing from Content Items in a Content Explorer Site
Folder tree. The exit’s parameters let users customize which Content Items are selected for publishing.
Also flushes all caches on a Publishing Hub server.

Class Name
com.percussion.fastforward.sfp.PSSiteFolderContentListBulkExit

192 Rhythmyx Technical Reference Manual

Interface
com.percussion.extension.IPSResultDocumentProcessor

Parameters

Name Data Type Description

filenameContext String Delivery location for Content Items. By default, takes the
value of the locationCtx parameter in the Content List
URL. If a delivery location is not specified, Rhythmyx
delivers to the URL in the Assembly Context.

deliveryType String Type of delivery. Options are filesystem or ftp. Takes the
value of the delivery parameter in the Content List URL
if specified. Default value is ftp.

isIncremental String Incremental publishing flag. Options are y or n. Takes the
value of the inc parameter in the Content List URL if
specified. Default value is n.

contentValidValues String Indicates in which States it is valid to publish this
content. For more information, see "Extending
Publishable States" and "Edit State Page" in the online
CMS Help. Takes the value of the valid parameter in the
Content List URL if specified.

MaxRowsPerPage String Specifies the maximum number of Content Items to
appear on a single page of the Content List. Default is –1
(unlimited number of Content Items).

contentResourceName String Name of the resource that looks up Content Items and
their Variants for publishing. The
rxs_SiteFolderContentListBulkBuilder only processes the
SQL results set from this resource, it does not process the
XML result document. Therefore, if the resource
includes any post-exits, the
rxs_SiteFolderContentListBulkBuilder exit will ignore
them.

ParamListToPass String Comma separated list of all non standard HTML
parameters to pass from request to the content URL for
each item in the content list.

rxs_SiteFolderAssembly

Name:
rxs_SiteFolderAssembly

Context:
global/percussion/fastforward/sfp/

 Chapter 8 Extensions 193

Description:
This extension retrieves a Site Folder path to build a Site Folder publishing location. You can use this as a
location scheme generator or as a UDF mapped to a path variable in an application resource that builds a
publishing location. For more information see the FastForward documentation.

Class name:
com.percussion.fastforward.sfp.PSSiteFolderAssembly

Interfaces:
com.percussion.extension.IPSAssemblyLocation
com.percussion.extension.IPSUdfProcessor

rxs_AutoSiteItemFilter

Name:
rxs_AutoSiteItemFilter

Context:
global/percussion/fastforward/sfp/

Description:
This exit removes Content Items that are not associated with sys_siteid from an autoindex.

Class name:
com.percussion.fastforward.sfp.PSAutoSiteItemFilter

Interfaces:
com.percussion.extension.IPSResultDocumentProcessor

Parameters:

Name Data
Type

Description

ItemSiteFolderURL string The url of a resource that retrieves the site folder root xml file. Default is
../rx_supportSiteFolderContentList/lookupSiteFolderRoot.xml

194 Rhythmyx Technical Reference Manual

rxs_NavAutoSlot

Name:
rxs_NavAutoSlot

Context:
global/percussion/fastforward/managednav/

Description:
This post-exit is attached to an assembler resource after the sys_casAddAssemblerInfo exit for any
Content Type that has navigation bars. It adds the correct links to the Navigation Slots on an assembled
Page. The exit finds Folders which contain the Content Item being assembled and a Navon. If one such
Folder is found, a Variant of the Navon is inserted into the appropriate navigation Slot on the page. If
more than one such Folder is found, the exit locates a Folder which is a descendent of the Site Folder root
and inserts a Variant of the Navon into the appropriate navigation Slot on the page. If users supply a value
for sys_folderid or rx_folder (as an HTML parameter to the assembler application), the exit finds this
Folder and inserts a Variant of the Navon into the Navigation Slot.

Class name:
com.percussion.fastforward.managednav.PSNavAutoSlotExtension

Interface:
com.percussion.extension.IPSResultDocumentProcessor

Parameters
None

rxs_NavAddAttribute

Name:
rxs_NavAddAttribute

Context:
global/percussion/fastforward/managednav/

Description:
This exit adds an attribute from a Navon to the Navon node in the Managed Navigation output XML. Add
this exit to Navon assembly applications when you want to add Navon fields that are not included in the
XML by default. In general, this exit is best used to avoid a degradation in performance that could occur
if you added the attributes using a document call.

 Chapter 8 Extensions 195

Class name:
com.percussion.fastforward.managednav.PSNavAddAttribute

Interface:
com.percussion.extension.IPSResultDocumentProcessor

Parameters:

Name Data
Type

Description

attributeName string The name of the attribute to add to the output XML.

queryResource string The URL of the query resource that returns the attribute, usually in the form
of appname/queryresourcename.

index string The index of the column in the query resource, 1 based indexing

relativeLevelAttribute string The name of the relative level attribute. Optional.

rxs_NavFolderSelector
Context:

global/percussion/fastforward/managednav/

Description:

Selects a given folder id by pathname and appends sys_folderid to the parent request. Useful in assemblers
of Content Types which should be part of a navigation hierarchy, but are not in Folders. Most commonly
used as a pre-exit of an assembler application.

Class name:

com.percussion.fastforward.managednav.PSNavFolderSelector

Interfaces:

com.percussion.extension.IPSResultDocumentProcessor
com.percussion.extension.IPSUdfProcessor
com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name Data
Type

Description

pathname string Full path of the folder to select. Typically starts with //Sites

196 Rhythmyx Technical Reference Manual

rxs_NavTreeSlotMarker
Context:

global/percussion/fastforward/managednav/

Description:

Use this exit with the rxs_NavTreeLink extension to generate a navigation tree for a specific navon.
When this extension processes after rxs_NavTreeLink, it walks down the navtree and checks the info-url
for each "ancestor" node. If it determines that the navon has content in a specified slot, it marks the navon
element with an attribute set to "yes". You can use this attribute as a conditional in XSLT processing.

The purpose of this extension is to propagate links in custom slots on navon Variants down the ancestor
tree and appear on each child navon. You can also use this extension for other logic in the XSL
stylesheets that process the result document.

Process this exit after the rxs_NavTreeLink. You can be use it multiple times to create a marker for more
than one slot.

Class name:

com.percussion.fastforward.managednav.PSNavTreeSlotMarker

Interfaces:

com.percussion.extension.IPSResultDocumentProcessor

Parameters:

Name Data
Type

Description

markerName string Name of the attribute that indicates that a navon has content in a specified
slot.

slotName string Name of the Slot that the exit checks for content.

rxs_NavReset
This extension is used in internal Rhythmyx applications.

rxs_NavTreeLink
This extension is used in internal Rhythmyx applications.

rxs_NavTreeBuilder
This extension is used in internal Rhythmyx applications.

 Chapter 8 Extensions 197

sys_casAddAssemblerInfo

Name:
sys_casAddAssemblerInfo

Context:
Java/global/percussion/contentassembler/

Description:
This post-exit adds information needed in content assembler stylesheets to the result document. It creates
an XML document conforming to the DTD sys_AssemblerInfo.dtd and inserts it into the result document
as its first child. Then it creates (or modifies) a separate set of stylesheets adding extra links for editing the
related content in preview or WYSIWYG mode (active assembly mode). This exit should be added to
most assembly application resources.

Class name:
com.percussion.cas.PSAddAssemblerInfo

Resource file:
classes

Interface:
com.percussion.extension.IPSResultDocumentProcessor

Example:
The following is an example of XML generated by this exit:

 <sys_AssemblerInfo previewurl="/Rhythmyx/casArticle/casArticle.xml"
sys_siteid="0" pssessionid="1a52d1b40cc8716577d33ce255d51e65d0e0cfdb"
sys_command="editrc" sys_contentid="310" sys_variantid="1"
sys_revision="1" sys_context="0" sys_authtype="0">
 <RelatedContent>
 <slotrceditlink>http://127.0.0.1:9992/Rhythmyx/sys_ComponentSup
port/componentabslink.xml?pssessionid=1a52d1b40cc8716577d33ce255d51e65d0
e0cfdb&sys_componentname=rcsearch</slotrceditlink>
 <linkurl rxcontext="0" slotid="" relateditemid="" contentid=""
variantid="" slotname=""
moveuplink="http://winkelried:9992/Rhythmyx/sys_rcSupport/updaterelatedi
tems.html?sys_command=moveup&sys_contentid=&sys_variantid=1&
sys_slotid=&sys_context=0&sys_revision=1&sys_authtype=0&
sysid="
movedownlink="http://winkelried:9992/Rhythmyx/sys_rcSupport/updaterelate
ditems.html?sys_command=movedown&sys_contentid=&sys_variantid=1&
amp;sys_slotid=&sys_context=0&sys_revision=1&sys_authtype=0&
amp;sysid="

198 Rhythmyx Technical Reference Manual

deletelink="http://winkelried:9992/Rhythmyx/sys_rcSupport/updaterelatedi
tems.html?sys_command=delete&sys_contentid=&sys_variantid=1&
sys_slotid=&sys_revision=1&sys_context=0&sys_authtype=0&
sysid=" editlink=""
modifylink="http://winkelried:9992/Rhythmyx/sys_rcSupport/modifyslotitem
.html?sys_variantid=1&sys_context=0&sys_authtype=0&sysid=">
 <Value current=""/>
 </linkurl>
 </RelatedContent>
 <AssemblerProperties>
 <Property name="rxcss">
 <Value current="../web_resources/xroads/resources/css"/>
 </Property>
 <Property name="rxjavascript">
 <Value current="../web_resources/xroads/resources/js"/>
 </Property>
 <Property name="rximage">
 <Value current="../web_resources/xroads/resources/images"/>
 </Property>
 <Property name="rxflash">
 <Value
current="../web_resources/xroads/resources/images/fla"/>
 </Property>
 </AssemblerProperties>
 <InlineLink
url="http://winkelried:9992/Rhythmyx/sys_casSupport/PublicationUrl.xml?s
ys_context=0&pssessionid=1a52d1b40cc8716577d33ce255d51e65d0e0cfdb"/>
 </sys_AssemblerInfo>

Parameters:
None

sys_casAddChildInfo

Context:
Java/global/percussion/contentassembler/

Description:
Queries the specified URL and appends the content of the returned doc to the current doc. Used in
Content Assemblers to add data from child tables to the assembled output. Attach this exit to Content
Assemblers for Content Types that store data in child tables when you need to include the data from the
child table in the formatted output. If the formatted output does not need data from the child table, the
assembly resource does not need this exit.

To use this exit, you must create a resource that queries data from the child table.

Class name:
com.percussion.cas.PSAddChildInfo

 Chapter 8 Extensions 199

Interface:
com.percussion.extension.IPSResultDocumentProcessor

Parameters

Name Data Type Description
resource java.lang.String (Required) URL of the resource (relative to the Rhythmyx root)

that queries the child table. It should be of the form
RhythmyxApplication/ResourceName

sys_casAutoRelatedContent

Name:
sys_casAutoRelatedContent

Context:
Java/global/percussion/exit/

Description:
This Exit is added to the Assembly resource of Automated Index Assembler applications. It adds the
related content generated by the Automated Content Query to the Slots in the assembly template. This
Exit must be added AFTER the sys_casAddAssemblerInfo exit.

Class name:
com.percussion.cas.PSAutoRelatedContent

Resource:
file:classes

Interface:
com.percussion.extension.IPSResultDocumentProcessor

Parameters

Name Data Type Description

LinkURL java.lang.String Name of the linkURL attribute. This must be an attribute of
the root node

slotNameOverride java.lang.String Slot Name override (optional). Allows the caller to place the
results in any slot.

200 Rhythmyx Technical Reference Manual

Name Data Type Description

maxResults java.lang.Integer Optional. Defines the maximum number of related Content
Items that can be added to the target Slot.

sys_ceDependencyTree

Context:
Java/global/percussion/contenteditor/

Description:
This exit reformats the result document as an XML tree by appending all child and parent items of the
current content item to it. It makes repeated internal requests to expand the parents and children. The
dependency viewer in the content editors uses this exit.

Class name:
com.percussion.ce.PSDependencyTree

Interface:
com.percussion.extension.IPSResultDocumentProcessor

Parameters:
None

sys_cmpAddAllParamsToUrl

Context:
Java/global/percussion/extensions/general/

Description:
This pre-exit adds all HTML parameters in the request to the specified URLs. The URLs are specified as
the first children of the root element in the result document.

For example, if the request came with the HTML parameters param1 and param2, the result document:
<root>
 <url1>/Rhythmyx/sampleApp/samplePage1.htm</url1>
 <url2>/Rhythmyx/sampleApp/samplePage2.htm</url2>
</root>

becomes
<root>

<url1>/Rhythmyx/sampleApp/samplePage1.htm?param1=value1&param2=value
2</url1>

 Chapter 8 Extensions 201

<url2>/Rhythmyx/sampleApp/samplePage2.htm?param1=value1&param2=value
2</url2>
</root>

The parameter pssessionid is always skipped.

Currently, this exit only modifies children and grandchildren of the root that have the element name
specified. Also, it does not modify the URLs if they are the attributes of an element.

Class name:
com.percussion.extensions.general.PSAddAllParamsToUrl

Resource file:
classes

Interface:
com.percussion.extension.IPSResultDocumentProcessor

Parameters:

Name Data Type Description

UrlElementName String The name of the unique element name storing the URL value

sys_cmpMenuTree

Context:
Java/global/percussion/extensions/components/

Description:
This exit builds a cascaded menu item list XML document by making multiple internal requests to a
Rhythmyx resource. The resulting tree depends on the data in the backend tables RXSYSCOMPONENT
and RXSYSCOMPONENTRELATIONS.

The following is a sample of the XML document:
<menuitem name="ca_inbox" id="20" type="2">
 <displaytext>Inbox</displaytext>
 <description>Items assigned to me</description>
 <url>
 http://10.10.10.56:9992/Rhythmyx/sys_ca/camain.html?
 sys_sortparam=title&sys_componentname=ca_inbox
 </url>
 <userrolesurl>
 http://127.0.0.1:9992/Rhythmyx/sys_cmpUserStatus/
 userstatus.xml?pssessionid=
 8037ca1cbcc8bd31e3db8b392d4fff8c62c9dacc
 </userrolesurl>

202 Rhythmyx Technical Reference Manual

 <contexturl>
 http://127.0.0.1:9992/Rhythmyx/sys_ComponentSupport/
 componentcontext.xml?pssessionid=
 8037ca1cbcc8bd31e3db8b392d4fff8c62c9dacc&sys_componentid=20
 </contexturl>
 <componentname>ca_inbox</componentname>
 <childitem id="1"/>
 <childitem id="2"/>
 <childitem id="6"/>
 <childitem id="7"/>
 </menuitem>

The exit makes multiple requests are made to expand each child item to menu item. Use it to generate the
navigation bars in the Content Explorer.

Class name:
com.percussion.extensions.components.PSMenuTree

Resource file:
classes

Interface:
com.percussion.extension.IPSResultDocumentProcessor

Parameters:
None

sys_CollapseHTMLParameter

Context:
Java/global/percussion/generic/

Description:
This exit collapses a multi-value (array) HTML parameter by taking the first value. In other words, it
replaces an entire array with the first value of the array.

The number of parameters is fixed at 8, but it can handle any number of parameters. This exit is not
required if you use the Single HTML parameter option in the Workbench.

Class name:
com.percussion.extensions.general.PSCollapseHtmlParameter

 Chapter 8 Extensions 203

Interface:
com.percussion.extension.IPSResultDocumentProcessor,
com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name Data Type Description

p1 java.lang.String First array value

p2 java.lang.String Second array value

p3 java.lang.String Third array value

p4 java.lang.String Fourth array value

p5 java.lang.String Fifth array value

p6 java.lang.String Sixth array value

p7 java.lang.String Seventh array value

p8 java.lang.String Eighth array value

sys_DatabasePublisher

Context:
Java/global/percussion/contentassembler/

Description:
This exit is required on each database publisher parent table resource. This exit looks up the table
definition specified in the parent table mapper and produces the XML file that conforms to the
sys_DatabasePublisher.dtd.

Class name:
com.percussion.cas.PSDatabasePublisher

204 Rhythmyx Technical Reference Manual

Interface:
com.percussion.extension.IPSResultDocumentProcessor

Parameters:

Name Data Type Description

action java.lang.String Action performed on the database:

r - (default) Inserts the row. Deletes it first if it already exists.

n - Inserts the row if it does not already exist.

u - Updates the row if it already exists.
d - Deletes the row if it already exists. Use d for unpublishing.

aliasmap java.lang.String Optional. Static XML file in the assembler application that contains
table and column name mappings to be used if the table or column
names contain characters that are not allowed in XML elements. The
exit creates XML files that use the aliases, and then reinserts the real
names in the output. Must conform to: ../dtd/aliasmap.dtd

sys_FormatFileTree

Context:
Java/global/percussion/generic

Description:
This exit reformats a list of file path names contained in an XML result tree into a true tree structure. Use
this extension to display file lists in the Rhythmyx CMS.

Class name:
com.percussion.extensions.general.PSFormatFileTree

Interface:
com.percussion.extension.IPSResultDocumentProcessor

Parameters:

Name Data Type Description

inputListName java.lang.String Name of the input file list <filelist>

fileTreeName java.lang.String Optional. Name of the XML element that contains the output tree.
Defaults to <filetree>.

fileElementName java.lang.String Optional. Name of the XML file elements found in the input list.
Defaults to <file>.

 Chapter 8 Extensions 205

Name Data Type Description

filePathName java.lang.String Optional. Name of the XML attribute that stores the full pathname.
Defaults to fullpath.

sys_ftUploadAppendFileAttributes

Context:
Java/global/percussion/filetracker

Description:
This exit appends the size and modified datetime stamps to the update statistics document. This exit
always goes with the sys_uploadFileAttributes (see "sys_DatabasePublisher" on page 203) preprocessor
exit. The result statistics document has two elements added as first children, size and modified.

Class name:
com.percussion.uploadexits.PSUploadAppendFileAttrs

Resource:
file:classes

Interface:
com.percussion.extension.IPSResultDocumentProcessor

Parameters:

Name Data Type Description

FileSizeParam String The name of the HTML parameter that stores the file size. This
must be the same as the name given for the preprocessor exit
uploadFileAttributes. Always literal.

 DateParam String The name of the HTML parameter that stores the modified
date. This must be the same as the name given for the
preprocessor exit uploadFileAttributes. Always literal.

206 Rhythmyx Technical Reference Manual

sys_IncrementalContentFilter

Context:
Java/global/percussion/generic

Description:
This extension filters a content list, removing items which have already been published or unpublished. It
performs an internal request to find the entry in the RXSITEITEMS table that corresponds to the current
content item. If a valid entry is found, it removes the item from the content list. If no valid entry is found,
it leaves the item in the content list.

This exit lets you use the same query resource for both full and incremental content lists. The second
parameter, switchparameter, is optional.

If you specify the switchparameter name as incremental in the extension registration and your
content list resource is rx_pubContentLists/contentlist_generic.xml:

 the resource returns a "filtered" content list if you include the parameter in the content list
URL and set it to yes, for example:
/Rhythmyx/rx_pubContentLists/contentlist_generic.xml?variantid=
101&incremental=yes

 the resource returns a "full" content list if you do not include the parameter in the content list
URL (or you include it but do not set it to yes), for example:
/Rhythmyx/rx_pubContentLists/contentlist_generic.xml?variantid=
101

If you do not specify the switchparameter name in the extension registration, the resource always
returns a “filtered” content list.

You must create the internal request that finds the item in RXSITEITEMS. Add it to the content list
application by performing the following steps:

1 Open the Content List application in the Rhythmyx Workbench.

2 Drag <Rhythmyx root>/DTD/contentlist.dtd onto the application window.

3 Rename the request itemstatus.

4 Open the Resource Editor and add the RXSITEITEMS table to the backend datatank.

 Chapter 8 Extensions 207

5 Open the Selector and define the following conditions for the query:

Figure 34: Selector to retrieve Items from RXSITEITEMS table.

This selection returns a single row (one content item) from the RXSITEITEMS table.
REVISIONID is not required because only one revision of a Content Item should be present
on a site.

6 Open the mapper and map RXSITEITEMS columns to their equivalents in contentlist.dtd.
The mapping should resemble the following graphic, but exact mappings are not important,
because the exit only tests the presence or absence of a result document.

It is important that you check Return empty XML at the bottom of the mapper. If there is no
match on the query, the exit expects an empty document (which appears as
</contentitem>) , not a document with empty subnodes (such as <contentitem>
<title/> <contenturl/> . . . <contentitem/>). If it receives a document
with empty subnodes, it will attempt to process it, which will result in an error.

Figure 35: Mapping the support application for sys_IncrementalContentFilter

7 When you add the exit to a content list resource, set queryrequest equal to <application
name>/itemstatus and set switchparameter as specified above.

208 Rhythmyx Technical Reference Manual

Class name:
com.percussion.extensions.general.PSIncrementalContentFilter

Interface:
com.percussion.extension.IPSResultDocumentProcessor

Parameters:

Name Data Type Description

queryrequest

String Name of internal request for site item lookup

switchparameter

String Optional. Name of the HTML parameter for switching
the filter on and off.

Any name is valid. If the parameter is included and set
to yes, the filter is turned on. If the parameter is
included but omitted from the content list URL or set to
any value other than yes, the filter is turned off.

If the parameter is not included, the exit always returns
a filtered content list.

sys_LoadChildData

Context:
Java/global/percussion/system/

Description:
This exit has a similar function as the sys_casAddChildInfo exit. Use it in Content Assemblers to add data
from child tables to the assembled output.

The exit performs the query specified by the queryAttribute and replaces the childElement of the
baseElement with the results of the query. Attach it to Content Assemblers for Content Types that store
data in child tables when you need to include the data from the child table in the formatted output. If the
formatted output does not need data from the child table, the assembly resource does not need this exit.

To use this exit, you must create a resource that queries data from the child table.

Class name:
com.percussion.cms.objectstore.server.PSLoadChildDataExit

 Chapter 8 Extensions 209

Interface:
com.percussion.extension.IPSResultDocumentProcessor

Parameters

Name Data Type Description

baseElement java.lang.String Name of the element that will contain the child data.

childElement java.lang.String Name of the child element of the base element that will be replaced
with the results of the query.

queryAttribute java.lang.String Name of the attribute of the child element that specifies the query to
execute.

sys_ModifyXmlHierarchy

Context:
Java/global/percussion/generic

Description:
This extension is used to modify an XML documents hierarchy.

The concept of XML hierarchy modification is based on the need for setting up a discussion thread
system. Each discussion topic submission can be considered separately, thus having no relationship with
other submissions. However, most of the time, a submission is a "response" to a previously submitted
topic. This creates a new discussion "thread," with response submissions becoming children to a parent
submission topic. A relationship between the submissions is required to make this work.

To give a relationship to different submission topics, this exit uses a node-key pair comparison to provide
a hierarchical relationship between submission topics.

Example:

(Pay special attention to the relationship between parentid and id attributes.)
node = Discussion/Topic

response key = Discussion/Topic/@parentid

parent node = Discussion/Topic

parent key = Discussion/Topic/@id

Original XML Document:
<Discussion>
 <Topic id="1" parentid="0">;
 <body>This is the first thread in the discussion<;/body>
 </Topic>
 <Topic id="2" parentid="0">;
 <body>This is the second thread in the discussion</body>
 </Topic>
 <Topic id="3" parentid="1">

210 Rhythmyx Technical Reference Manual

 <body>;This is the first response to the first thread</body>
 </Topic>
</Discussion>

After ModifyXmlHierarchyExtension exit:
<Discussion>
 <Topic id="1" parentid="0">
 <body>This is the first thread in the discussion</body>
 <Topic id="3" parentid="1">
 <body>This is the first response to the first thread</body>;
 </Topic>
 </Topic>;
 <Topic id="2" parentid="0">
 <body>This is the second thread in the discussion</body>
 </Topic>
</Discussion>

Class name:
com.percussion.extension.PSModifyXmlHierarchyExtension

Interface:
com.percussion.extension.IPSResultDocumentProcessor

Parameters:

Name Data Type Description

responseNode java.lang.String Required. The name of the XML node that contains the attribute, or
"response key", for looking up the parent node of this submission topic.

responseKey java.lang.String Required. The attribute owned by the "response node". This key defines
which node is this response node's parent by looking at the "parent key"
defined in the "parent node".

The value of the response key must be unique among all the response
nodes.

parentNode java.lang.String Required. The name of the XML node that contains the attribute, or
"parent key", for holding the key that response nodes use to look up to
find the parent.

 parentKey java.lang.String Required. The attribute owned by the "parent node". The value that the
"response node" attempts to match with its "response key" to determine if
this "parent node" is the parent.

 Chapter 8 Extensions 211

sys_pubCreatePublisherConfig

Context:
Java/global/percussion/cms/publisher

Description:
This exit creates default configuration settings for a new remote publisher during registration. The default
settings correspond to the records in the RXPUBLISHERCONFIG table for PUBLISHERID=0.

During registration of a new remote publisher, updating the RXPUBLISHER and
RXPUBLISHERCONFIG tables by inheriting configuration settings corresponding to publisherid=0 for
the new one requires complicated manual SQL. This exit replaces the manual SQL and simplifies
upgrading the Rhythmyx application for registering a new remote publisher.

Class name:
com.percussion.publisher.server.PSExitCreatePublisherConfig

Interface:
com.percussion.extension.IPSResultDocumentProcessor

Parameters:

Name Data Type Description

htmlParamNewPublisherId String PublisherId of the new publisher being registered.

sys_PublishContent

Name:
sys_PublishContent

Context:
global/percussion/cms/publisher/

Description:
This extension publishes an Edition when a Content Item makes a Transition that is registered with
sys_PublishContent as the Workflow Action. One common example of this is when a user wants all
content to publish to a staging server immediately upon approval into a staging state.

The Workflow, Transition and Edition are specified in the file publish.xml. Before running the action,
create this file in <Rhythmyx root>/rxconfig/Workflow/ in the format:

<?xml version="1.0"?>

212 Rhythmyx Technical Reference Manual

 <root>
 <PSXPublish>
 <PSXWorkflowId>5004</PSXWorkflowId>
 <PSXTransitionId>1</PSXTransitionId>
 <PSXEdition>5005</PSXEdition>
 </PSXPublish>
 </root>

The Transition Id is unique only within the Workflow, not across Workflows.

If there are many requests to publish the same edition, this extension publishes one edition in addition to
the one already running and ignores all other requests.

Class name:
com.percussion.extensions.publishing.PSPublishContent

Interface:
com.percussion.extension.IPSWorkflowAction

Parameters:
None

sys_PublishEditionForPreview

Name:
sys_PublishEditionForPreview

Context:

Java/global/percussion/cms/publisher/

Description:
This exit is used to in database publishing contexts when content is served using ASP/JSP, or similar
applications. This exit creates a temporary "Edition" in the database so the user can preview Content
Items in a live context. When the temporary "Edition" is published, the preview is displayed to the user,
and the "Edition" data is removed from the database.

For details about the use of this exit, contact Percussion Software Technical Support.

Class name:
com.percussion.extensions.publishing.PSPublishEditionForPreview

 Chapter 8 Extensions 213

Interface:
com.percussion.extension.IPSResultDocumentProcessor

Parameters

Name Data Type Description

editionId java.lang.String ID of the Edition to Publish. This Edition must be a Manual Edition.

previewVariant java.lang.String ID of the Variant the user will specify to preview.

assemblyVariant java.lang.String ID of the Variant that actually generates the data.

support application java.lang.String (Optional) Name of the application that supports the exit for this instance.
Defaults to rx_pubPreviewEdition.

query resource java.lang.String (Optional) Name of the query resource in the support application. .
Defaults to queryEdition.

update resource java.lang.String (Optional) Name of the update resource in the support application.
Defaults to updateEdition.

sys_ReplaceResultDocument

Context:
Java/global/percussion/extensions/general

Description:
This exit enables an application to perform internal requests to different resources depending on the value
of a condition. When the condition is met, a corresponding resource document replaces the original
document. The Rhythmyx server does not support requests to resource names, but requires that you use
the pipe name (internal request name).

To use this exit, do the following:

1 Create one or more resources to be executed conditionally by copying the original resource
and modifying it and assigning pipe names in the Rhythmyx Workbench.

2 Place sys_ReplaceResultDocument as a post-exit on the original resource.

3 Assign the name of the conditional request document that you want to serve as a default to the
parameter DefaultRequestName.

4 Assign the condition for choosing a conditional resource (rather than using the original
document) to the parameter ConditionValue.

5 Assign conditions for choosing each conditional resource to FirstOptionValue,
SecondOptionalValue, and so on, depending on the number of conditional requests.

214 Rhythmyx Technical Reference Manual

6 Assign internal request names (pipe names of each resource) to FirstInternalRequestName,
SecondInternalRequestName, and so on, depending on the number of conditional requests.
FirstInternalRequestName should be the resource requested when FirstOptionValue is true,
SecondInternalRequestName should be the resource requested when SecondOptionValue is
true, and so on.

NOTE: If ConditionValue is not equal to any of the OptionValues, then DefaultRequestName is executed.
If the resource that corresponds to a condition is null, when the condition is met, the exit does not replace
the original document.

Class name:
com.percussion.extensions.general.PSReplaceResultDocument

Interface:
com.percussion.extension.IPSResultDocumentProcessor

Parameters:

Name Data Type Description

DefaultRequestName String Default resource name - choose this resource if the
conditional statement is true, but none of the other
conditions is met.

ConditionValue String Condition for choosing one of the conditional
resources.

FirstOptionValue String First condition. (Condition for requesting
FirstInternalRequestName)

FirstInternalRequestName String First conditional request name.

SecondOptionValue String Second condition. (Condition for requesting
SecondInternalRequestName)

SecondInternalRequestName String Second conditional request name.

. . .

NthOptionValue String Nth condition. (Condition for requesting
NthInternalRequestName)

NthInternalRequestName String Nth conditional request name.

 Chapter 8 Extensions 215

sys_ServerUserRoleSearch

Context:
Java/global/percussion/usersearch/

Description:
This exit can modify a result document by adding search results in the following cases:

1 Given the HTML parameter sys_command=GetRoles, it produces a list of server roles like:
<root>

 <role>role1</role>

 <role>role2</role>

</root>.

2 Given the HTML parameters sys_command=GetUsers and sys_role=roleName, it produces a
list of users that are members of the role roleName like:
<root>

 <role>roleName

 <user>user1</user>

 <user>role2</user>

 </role>

</root>.
The element <root> is any Document element of the result document.

Class name:
com.percussion.extensions.usersearch.PSServerUserSearch

Resource file:
classes

Interface:
com.percussion.extension.IPSResultDocumentProcessor

Parameters:

None

216 Rhythmyx Technical Reference Manual

sys_SetCookie

Context:
Java/global/percussion/generic/

Description:
This extension associates a cookie with the results to be returned to the requester in the HTML response
document.

Class name:
com.percussion.extension.PSSetCookieExtension

Interface:
com.percussion.extension.IPSResultDocumentProcessor

Example:
name=MySessId2
value=1001
expires=12/31/1999 11:59 p
domain=www.percussion.com
path=/
isSecure=1

This associates the cookie named MySessId2 with all requests on the www.percussion.com
Web server. The cookie is only sent over secure (SSL) connections. It has a value of 1001 and
will expire on December 31, 1999 at 11:59:00 pm.

Parameters:

Name Data Type Description

name java.lang.String Required. The name of the cookie.

value java.lang.String Required. The value of the cookie.

expires java.lang.String Optional. The date the cookie expires. Use 'EEE, dd-MMM-yyyy hh:mm:ss z' as
the date format (date or time may be omitted). Use 'literal' as the value type.

domain java.lang.String Optional. The domain name of the host from which the URI is accessed. For
instance, to set a cookie for any Web server in the percussion.com domain, set the
domain name to <code>percussion.com</code> To set a cookie for
www.percussion.com, set the domain name to the full server name:
www.percussion.com.

path java.lang.String Optional. Causes the exit to only send the cookie when accessing a URI under the
specified path on the host. This includes the path and all descendents. For instance,
using \"/\" matches all URI specifications on the host.

 Chapter 8 Extensions 217

Name Data Type Description

isSecure java.lang.String Optional. A boolean value that determines the connection type. When set to \"1\",
the cookie is only sent when a secure (SSL) connection has been established.
When set to \"0\" or \"\", any connection type is acceptable.

sys_SetEmptyXmlStyleSheet

Context:
Java/global/percussion/generic/

Description:
This exit associates a style sheet with an empty XML document when there is no root node in the XML
document. It is used primarily to return a static page when no data is found for a request.

Class name:
com.percussion.extension.PSSetEmptyXmlStyleSheetExtension

Interface:
com.percussion.extension.IPSResultDocumentProcessor

Parameters:

Name Data Type Description

styleSheet java.net.URL The URL of the stylesheet.

218 Rhythmyx Technical Reference Manual

sys_wfAddPossibleTransitions

Context:
Java/global/percussion/workflow

Description:
This exit adds a node to the result document that contains actions appropriate for this document, including
checkin/out, edit, preview and transitions.

Class name:
com.percussion.workflow.PSExitAddPossibleTransitionsEx

Interface:
com.percussion.extension.IPSResultDocumentProcessor

Parameters:

Name Data Type Description

UserName java.lang.String Name of the current user.

StatusDocumentElementName java.lang.String Node name (XML field name like
root/document) of the status
document.

ContentIDNodeName java.lang.String Node name (e.g. contentid or
@contentid) of the content ID.

sys_wfAppendWorkflowActions

Context:
Java/global/percussion/workflow

Description:
This exit appends a list of all workflow actions registered by the server to the result XML document. It
makes the <workflowactionlist> element a child of the root element in the document, and each action in
the list a <workflowaction> element.

Class name:
com.percussion.workflow.PSGetWorkflowActionList

 Chapter 8 Extensions 219

Interface:
com.percussion.extension.IPSResultDocumentProcessor

Parameters:
None

sys_wfExecuteActions

Context:
Java/global/percussion/workflow

Description:
This exit executes the assigned workflow actions for the transition.

Class name:
com.percussion.workflow.PSExecuteWorkflowActions

Interface:
com.percussion.extension.IPSResultDocumentProcessor

Parameters:
None

sys_wfPreviewWorkflow

Context:
Java/global/percussion/workflow

Description:
This exit transforms the result document into another DTD that the style sheet uses to generate the
graphical view of the workflow. Use this exit in the workflow editor application.

Class name:
com.percussion.workflow.PreviewWorkflow

220 Rhythmyx Technical Reference Manual

Interface:
com.percussion.extension.IPSResultDocumentProcessor

Parameters:
None

sys_wfSendNotifications

Context:
Java/global/percussion/workflow

Description:
This exit sends notifications to roles/ad-hoc users about the transition.

Class name:
com.percussion.workflow.PSExitNotifyAssignees

Interface:
com.percussion.extension.IPSResultDocumentProcessor

Parameters:

Name Data Type Description

ContentID java.lang.Integer Content ID.

UserName java.lang.String Name of the current user.

sys_wfUpdateHistory

Context:
Java/global/percussion/workflow

Description:
This exit updates content state history.

Class name:
com.percussion.workflow.PSExitUpdateHistory

 Chapter 8 Extensions 221

Interface:
com.percussion.extension.IPSResultDocumentProcessor

Parameters:

Name Data Type Description

ContentID java.lang.Integer Content ID.

UserName java.lang.String Name of the current user.

sys_xdCopyDom

Context:
Java/global/percussion/xmldom

Description:
This post-exit copies a DOM tree fragment into the result document. This is similar to
sys_xdDomToText, except that it copies a "fragment" of the source document under the root of the XML
result document. Use this in document assemblers if the output is to be processed with a stylesheet that is
aware of the XML document structure.

Class name:
com.percussion.xmldom.PSXdCopyDom

Interface:
com.percussion.extension.IPSResultDocumentProcessor

Parameters:

Name Data Type Description

sourceObjectName java.lang.String Name of source object. Defaults to XMLDOM.

sourceNodeName java.lang.String Name of source node. Leave blank or set to "."
to copy the entire document

destNodeName java.lang.String Name of destination XML node. If the name is
"." the new tree is copied under the root node.

222 Rhythmyx Technical Reference Manual

sys_xdDomToText

Context:
Java/global/percussion/xmldom

Description:
Pre-exit or post-exit that transfers an XML document into a string for insertion as a single field either on
insert or update or as the result of a query.

Class name:
com.percussion.xmldom.PSXdDomToText

Interface:
com.percussion.extension.IPSResultDocumentProcessor

Interface:
com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name Data Type Description

SourceObjectName java.lang.String Name of source document object

SourceNode java.lang.String Name of node within source document. Use
"InputDocument" if the source is an uploaded XML
document. To copy the entire document, leave blank or
set to "." Default is XMLDOM.

DestinationName java.lang.String Field or node where exit stores results. When this is
used as a pre-exit, an HTML parameter name; when
this is used as a post-exit, the name of an XML node
added beneath the "Document Element" of the result
document.

sys_xdRemoveElements

Context:
Java/global/percussion/xmldom

Description:
Post-exit that removes one or more XML elements from the result document. Use this to clean up the
result document by removing unnecessary nodes after transformation.

 Chapter 8 Extensions 223

Class name:
com.percussion.xmldom.PSXdRemoveElements

Interface:
com.percussion.extension.IPSResultDocumentProcessor

Parameters:

Name Data Type Description

element1 java.lang.String Optional. Name of element to remove.

element2 java.lang.String Optional. Name of element to remove.

element3 java.lang.String Optional. Name of element to remove.

element4 java.lang.String Optional. Name of element to remove.

element5 java.lang.String Optional. Name of element to remove.

element6 java.lang.String Optional. Name of element to remove.

element7 java.lang.String Optional. Name of element to remove.

element8 java.lang.String Optional. Name of element to remove.

element9 java.lang.String Optional. Name of element to remove.

element10 java.lang.String Optional. Name of element to remove.

224 Rhythmyx Technical Reference Manual

sys_xdTextToDom

Context:
Java/global/percussion/xmldom

Description:
Pre- or post-exit that parses an input text source and produces a DOM document.

Class name:
com.percussion.xmldom.PSXdTextToDom

Interface:
com.percussion.extension.IPSResultDocumentProcessor

Interface:
com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name Data Type Description

sourceName java.lang.String For a pre-exit, the name of the HTML parameter or
attached file containing the source. For a post-exit, the
name of the node containing the source.

DOMName java.lang.String Name of Temporary DOM Object. Default is
"XMLDOM."

tidyProperties java.lang.String Optional. Name of Tidy Properties file.

serverPageTags java.lang.String Optional. Name of ServerPageTags file

encodingDefault java.lang.String Optional. Java name for character encoding of the
source text. The value only affects uploaded files and
overrides any value supplied by the browser.

sys_xdTextToTree

Context:
Java/global/percussion/xmldom/

Description:
Post-exit that parses source text and replaces it with a tree of XML nodes. The document element of the
newly parsed document is attached underneath the original node.

 Chapter 8 Extensions 225

Class name:
com.percussion.xmldom.PSXdTextToTree

Interface:
com.percussion.extension.IPSResultDocumentProcessor

Parameters:

Name Data Type Description

SourceNode java.lang.String Name of source node in the XML result
document.

TidyProperties java.lang.String Name of tidy properties file.

ServerPageTags java.lang.String Name of ServerPageTags file.

sys_xdMultiTextToTree

Context:
Java/global/percussion/xmldom/

Description:
Post-exit to use in place of sys_xdTextToTree when a field occurs multiple times. If a content editor has a
child editor with controls that require sys_xdTextToTree (e.g. <Rich_Text_Control_Name), use
sys_xdMultiTextToTree. sys_xdTextToTree will only pick up the first occurrence of a field, but
sys_xdMultiTextToTree will pick up all occurrences of the field.

Class name:
com.percussion.xmldom.PSXdMultiTextToTree

Interface:
com.percussion.extension.IPSResultDocumentProcessor

Parameters:

Name Data Type Description

SourceNode java.lang.String Name of source node in the XML result document.

TidyProperties java.lang.String Name of tidy properties file.

ServerPageTags java.lang.String Name of ServerPageTags file.

226 Rhythmyx Technical Reference Manual

sys_xdTransformDom

Context:
Java/global/percussion/xmldom

Description:
Pre-exit or post-exit that runs the source DOM through an XSL stylesheet. It parses the result with the
XML parser and stores it in the destination object. To ensure that the output is well-formed, use
<xsl:output method="xml">.

The XSL stylesheet must reside in the current application directory. To do this, attach it to a query in the
current application.

Class Name:
com.percussion.xmldom.PSXdTransformDom

Interface:
com.percussion.extension.IPSResultDocumentProcessor,
com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name Data Type Description

sourceObjectName java.lang.String Optional. Source object name. Default is "XMLDOM."

When used as a pre-exit, the special XML document name
InputDocument may be used to refer to the input XML
document (usually, this document is provided by the
PSXmlUploader).

When used as a post-exit, the special XML document
name ResultDocument may be used. This name refers to
the document passed as an argument to the exit (the
document created by the Rhythmyx mapper).

StyleSheet java.lang.String Stylesheet name within current application.

destObjectName java.lang.String Optional. Destination object name. Can be the same as the
source DOM name.

 Chapter 8 Extensions 227

sys_xdTransformDomToText

Context:
Java/global/percussion/xmldom

Description:
Pre-exit or post-exit that transforms an XML document and stores the result as text. The output is not
parsed, and therefore does not have to be well-formed. The stylesheet may create XML, HTML or plain
text.

Class name:
com.percussion.xmldom.PSXdTransformDomToText

Interface:
com.percussion.extension.IPSResultDocumentProcessor,
com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name Data Type Description

sourceObjectName java.lang.String Name of source DOM object.

May be the special XML document name
InputDocument when used as a pre-exit. This name
refers to the input XML document. Usually, this
document is provided by the PSXmlUploader.

May be the special XML document name
ResultDocument when used as a post-exit. This name
refers to the document passed as an argument to the
exit (the document created by the Rhythmyx
mapper).

StyleSheet java.lang.String Stylesheet within the current application. This file
must be stored in the current application's directory.

destObjectName java.lang.String Name of destination parameter or node.

In a pre-exit, the value is always an HTML
parameter.

In a post-exit, the name of an XML node added
beneath the "Document Element" of the result
document. If you use a multiple-level name, only the
last node is replaced. For example, if you use the
name, category/firstnode, category must exist in the
document. The exit creates firstnode, or replaces its
first occurrence.

228 Rhythmyx Technical Reference Manual

Request Preprocessing

sys_AddCurrentDateTime

Context:
Java/global/percussion/generic/

Description:
This exit adds the current date and time (relative to the Rhythmyx server) as an HTML parameter to the
provided request. It formats the date and time according to the provided format pattern or to the default
(yyyy-MM-dd HH:mm:ss) if no format pattern provided. Any Java SimpleDateFormat patterns
(http://java.sun.com/j2se/1.3/docs/api/java/text/SimpleDateFormat.html) are acceptable.

Use this exit to add the date/time when building time dependent selection conditions (for example, during
incremental publishing of content.)

Class name:
com.percussion.extensions.general.PSAddCurrentDateTime

Interface:
com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name Data Type Description

htmlParamName java.lang.String The name of the HTML parameter to be added to the provided
request. May be null or empty. If not provided, the default
name sys_NOW is used.

formatPattern java.lang.String The pattern to use to format the current date and time. May be
null or empty. If not provided, the exit uses the default of
yyyy-MM-dd HH:mm:ss

dateOffset

java.lang.String A negative or positive integer that indicates the number of
days to offset the current date by. For example, if the current
date is 5/30/2002, and the offset is –2, the current date is
returned as 5/28/2002.

truncate java.lang.String Indicates whether or not to truncate the current time setting to
the hour. For example, if the current time is 12:36:01 and
truncate = yes, the current time is returned as 12:00:00

Values:
yes = truncate
no or null = do not truncate.

http://java.sun.com/j2se/1.3/docs/api/java/text/SimpleDateFormat.html

 Chapter 8 Extensions 229

sys_caDeleteContent

Name:
sys_caDeleteContent

Context:
Java/global/percussion/ca/

Description:
This exit builds a content list for deletion by an update resource after deleting data from the content type
specific tables by making internal requests to the content editor's purge resource. If the attempt to delete
the data fails, the exit adds the content item to the skipped item list for deletion. Place this exit on an
update resource that deletes rows from all system tables.

The DTD for the document is:
<!ELEMENT deleterows (row*, skipped) >
<!ELEMENT row (#PCDATA) >
<!ATTLIST row pkey CDATA #IMPLIED >
<!ELEMENT skipped (row*) >

Class name:
com.percussion.extensions.ca.PSDeleteContent

Resource file:
classes

Interface:
com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name Data Type Description

keyParameterName String Name of the html parameter that holds the primary key
from the backend table. Map keyParameterName to the
backend table's primary key.

230 Rhythmyx Technical Reference Manual

sys_casConcatAssemblyLocation

Name:
sys_casConcatAssemblyLocation

Context:
Java/global/percussion/contentassembler/

Description:
This exit concatenates all parameters in the RXLOCATIONSCHEMEPARAMS table to generate the
assembly location. If no parameters are specified, it returns an empty string. It makes no checks, and
transforms backslashes in parameters to forward slashes.

Use this as a generator exit.

Example:
params[0] + params[1] + . . . + params[n].

Class name:
com.percussion.cas.PSConcatAssemblyLocation

Interface:
com.percussion.extension.IPSAssemblyLocation

Parameters:
None

sys_casConcatWithIdAssemblyLocation

Name:
sys_casConcatWithIdAssemblyLocation

Context:
Java/global/percussion/contentassembler/

Description:
This exit concatenates values to generate an assembly location. It uses the first parameter as an index that
specifies where to append the second parameter (contentid) in a concatenated list made up of parameters
from the RXLOCATIONSCHEMEPARAMS table.

 Chapter 8 Extensions 231

It requires at least 2 parameters from the table and handles as many parameters as provided. It checks that
the minimum number of parameters are provided and that the index is in the range of the provided
parameters. It transforms all backslashes in parameters to forward slashes. Use this as a generator exit.

Example:
If the index parameter = 1, a location string like this will be created:

params[1] + contentid + params[2] + . . . + params[n].

Class name:
com.percussion.cas.PSConcatWithIdAssemblyLocation

Interface:
com.percussion.extension.IPSAssemblyLocation

Parameters:

Name Data Type Description

index java.lang.Object Required. Number that specifies where, sequentially, to
append the contentid in the list of other parameters. This is a
string or an object which can be converted to a string using the
toString method. When toString parses the string as an integer
it must return a valid integer.

contentid java.lang.Object Optional. The contentid for which this extension creates the
location URL. If not provided, takes the contentid of the
current request.

sys_casDefaultAssemblyLocation

Name:
sys_casDefaultAssemblyLocation

Context:
Java/global/percussion/contentassembler/

Description:
This exit concatenates the specified parameters to generate the assembly location and adds the contentid
before the suffix. (root+path+contentid+suffix). Use this as a generator exit.

Class name:
com.percussion.cas.PSDefaultAssemblyLocation

232 Rhythmyx Technical Reference Manual

Interface:
com.percussion.extension.IPSAssemblyLocation

Parameters:

Name Data Type Description

root java.lang.Object Required. The root part of the location URL to be created.
 Forward and backward slashes are permitted. If this
parameter does not end with a path delimiter, the exit adds
one.

path java.lang.Object Required. The resource path part of the location URL to be
created. Forward and backward slashes are permitted.
Acceptable with or without start and end path delimiters.

suffix java.lang.Object Required. The suffix part of the URL location to be created.
Acceptable with or without delimiter.

sys_casGenericAssemblyLocation

Name:
sys_casGenericAssemblyLocation

Context:
Java/global/percussion/contentassembler/

Description:
Builds a delivery location by concatenating all the text nodes of the XML document returned by the
specified resource.

Class name:
com.percussion.cas.PSGenericAssembly

Interface:
com.percussion.extension.IPSAssemblyLocation

Parameters:

Name Data Type Description

resource java.lang.String Required parameter. URL of the resource (relative to the Rhythmyx root)
that supplies the location. It should be of the form
RhythmyxApplication/ResourceName

 Chapter 8 Extensions 233

Name Data Type Description

contentid java.lang.String Optional parameter. It is the content id of the item. If specified, it will be
added as an html parameter (sys_contentid) when querying the specified
resource

revision java.lang.String Optional parameter. It is the revision id of the item. If specified, it will be
added as an html parameter (sys_revision) when querying the specified
resource

sys_casModifyRelatedContent

Name:
sys_casModifyRelatedContent

Context:
Java/global/percussion/contentassembler/

Description:
This exit handles all modification requests for related content items, including inserting items into a slot,
moving an item up in a slot, deleting an item from a slot, moving an item down in a slot, and moving the
item to another slot or changing the item variant within a slot. Creates an XML document that is input to
the update resource.

The exit sets the DBActionType parameter based on whether the modification is inserting new rows,
updating rows, or deleting existing row(s). It uses an internal query request to get the required information
about the slot items.

Class name:
com.percussion.cas.PSModifyRelatedContent

Interface:
com.percussion.extension.IPSRequestPreProcessor

Parameters:
None

234 Rhythmyx Technical Reference Manual

sys_CollapseHTMLParameter

Context:
Java/global/percussion/generic/

Description:
This exit collapses a multi-value (array) HTML parameter by taking the first value. In other words, it
replaces an entire array with the first value of the array.

The number of parameters is fixed at 8, but it can handle any number of parameters. This exit is not
required if you use the Single HTML parameter option in the Workbench.

Class name:
com.percussion.extensions.general.PSCollapseHtmlParameter

Interface:
com.percussion.extension.IPSResultDocumentProcessor,
com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name Data Type Description

p1 java.lang.String First array value

p2 java.lang.String Second array value

p3 java.lang.String Third array value

p4 java.lang.String Fourth array value

p5 java.lang.String Fifth array value

p6 java.lang.String Sixth array value

p7 java.lang.String Seventh array value

p8 java.lang.String Eighth array value

sys_commAuthenticateUser

Name:
sys_commAuthenticateUser

Context:
Java/global/percussion/communities

 Chapter 8 Extensions 235

Description:
This exit authenticates a user's community. Add sys_commAuthenticateUser to resources in applications
that produce HTML pages that compose the CMS interface, including all resources in the sys_ca
application and all resources that are attached to non-default stylesheets in the Publishing, Workflow and
System applications.

If the Communities feature is disabled (communities_enabled=no in the server.properties file), the exit
passes the authentication, sets the user's communityid to 0, and stores the Community as the user's session
object (sys_community).

If the Communities feature is enabled (communities_enabled=yes in the server.properties file) the exit
performs the following:

1 Tries to obtain the user Community from the session; if it cannot, tries to recover it from
Cookies. Recovering communityid from Cookies is required when a session times out while a
user is on a Rhythmyx page, because the server creates a new session, but the communityid is
not available in it.

2 If it cannot obtain a user Community, it assigns the system Community (communityid=1). In
this case, authentication automatically succeeds, and the exit goes to step 3.

3 After the exit obtains the user Community, if the user Community is not the system
Community, the exit makes an internal request that produces a list of all of the user's
Communities. If the list contains the user Community, authentication succeeds; otherwise, it
fails.

4 If the user Community is the system Community, authentication automatically succeeds.

5 If authentication succeeds, the exit stores the user's Community as the session object.

Class name:
com.percussion.community.PSAuthenticateUser

Interface:
com.percussion.extension.IPSRequestPreProcessor

Parameters:
None

sys_ConvertCustomSearchOperator

Name:
sys_ConvertCustomSearchOperator

Context:
Java/global/percussion/cx/

236 Rhythmyx Technical Reference Manual

Description:
Converts the custom search operator sent by the Content Explorer applet to the proper backend SQL
operator. Can also convert the operator and value(s) sent to the appropriate SQL where clause syntax.

Class:
name:com.percussion.extensions.cx.PSConvertCustomSearchOperator

Interface:
com.percussion.extension.IPSRequestPreProcessor

Parameters

Name Data Type Description

operatorParamName java.lang.String Required. Name of the HTML parameter containing
the operator to convert.

If the valueParamName parameter does not have a
value, the operator is converted and assigned to the
HTML parameter specified in this parameter. In that
case, only text operators are valid.

If the valueParamName does contain a value, the
HTML parameter specified in this parameter is not
modified. For additional behavior, see the
description of the valueParamName parameter.

valueParamName java.lang.String Optional Name of the HTML parameter containing
the value or values to convert.

If this parameter has a value, the operator specified
in the operatorNameParameter and the value of this
parameter are used to construct a SQL fragment that
can be used in a WHERE clause. This SQL
fragment is stored in the HTML parameter specified
sqlFragmentParamName parameter.

If the specified HTML parameter does not contain a
value, no processing occurs.

sqlFragmentParamName java.lang.String Required if a value is defined in the
valueParamName parameter. Name of the HTML
parameter used to store a generated SQL fragment.
For details about the SQL fragment, see the
description of the valueParamName

backendColumnName java.lang.String Required if a value is defined in the
valueParamName parameter. Specifies the backend
database table column to use in the SQL fragment.

 Chapter 8 Extensions 237

Name Data Type Description

backendColumnDataType java.lang.String Required. Datatype of the backend table column
specified in the backendColumnName parameter.
Valid options include TEXT(default), NUMBER,
and DATE.

connectorOperator java.lang.String Optional. Specifies the operator or prepend to the
SQL fragment. Valid values are AND and OR. If
no value is specified in this parameter, no operator
value is prepended to the SQL fragment.

The value of this parameter is ignored if no value is
specified for the valueParamName parameter, or if
the HTML parameter specified in that parameter is
NULL or invalid.

dateFormatString java.lang.String Required. Format to use if the backend column type
is DATE. Must match the date format of the of your
RDBMS. Formats must conform to one of the
formats specified in the java.text.SimpleDateFormat.

Defaults to yyyy-MM-dd.

useHtmlParamDoc java.lang.String Required. Flag specifying where to derive the
HTML parameter values.

If the value of this flag is y, HTML parameter values
are derived from the submitted XML document.
This document must conform to the format expected
by PSHtmlParamDocument.fromXml(Element).

If the value of this flag is n, the parameter values are
derived from the HTML parameters in the submitted
request.

238 Rhythmyx Technical Reference Manual

sys_CopyParameter

Description:
This exit copies the request parameter named by the exit parameter "source" into the request parameter
named by the exit parameter "destination"

Class Name:
com.percussion.extensions.general.PSCopyParameter

Interface:
com.percussion.extension.IPSRequestPreProcessor

Parameters

Name Data Type Description

source java.lang.String Request parameter name to be copied.

destination java.lang.String Request parameter name to receive copy.

sys_FileInfo

Context:
Java/global/percussion/generic/

Description:
This exit scans the server's HTML parameter map. For each file object it finds, it creates 0 or more
metadata parameters and adds them to the map. The information it attempts to add is: filepath, filename,
extension, MIME type, character encoding, and size. If it can find the information,it adds the parameter;
otherwise it adds nothing for that property. The naming convention for the additional parameters is
originalname_property. The corresponding property parameter suffixes are: _fullFilepath, _filename, _ext,
_type, _encoding, _size, respectively.

The following table lists the sys_FileInfo suffixes, sample field names formed using the suffixes, and the
fields' contents.

Suffix Sample Field Content

_fullFilepath imagebody_fullFilepath Original file path and name of the uploaded file.

_filename imagebody_filename The original filename of the uploaded file.

_ext imagebody_ext The file extension.

_type imagebody_type The MIME type and subtype.

_encoding imagebody_encoding The character encoding.

_size imagebody_size The length of the file, in bytes.

 Chapter 8 Extensions 239

When you add a sys_File control or a sys_WebImageFX control to a field in a Content Type, Rhythmyx
automatically adds sys_FileInfo as a dependency of the Content Type.

The _ext and _type fields provide information that helps browsers display your uploaded files correctly
when you use the sys_file control.

The _filename and _type fields provide information that helps browsers display your uploaded files
correctly when you use the sys_WebImageFX control.

See sys_File control (see "sys_File" on page 60) or sys_WebImageFX control (on page 65) for
information.

Class name:
com.percussion.extensions.general.PSFileInfo

Interface:
com.percussion.extension.IPSRequestPreProcessor

Parameters:
None

sys_FlushCache

Context
Java/global/percussion/system/

Description
On a server specified as a Publishing hub, flushes all caches (Assembler cache, Resource cache, and
Folder cache). On other servers, this exit is not activated.

This exit should be added to any Content List resource to ensure that all caches are flushed prior to
publishing content.

Class Name
com.percussion.server.cache.PSExitFlushCache

Interface
com.percussion.extension.IPSRequestPreProcessor

Parameters
None

240 Rhythmyx Technical Reference Manual

sys_FlushAssemblerCache

Context:
global/percussion/system/

Description:
Pre-exit that flushes all items from the server cache or flushes only the items specified by the parameters.
 If caching is not enabled for the server, calling this exit has no effect, but does not produce an error. Add
this exit to any content list that includes an auto index to force the server to flush the variants of auto index
content items before publishing them.

Class name:
com.percussion.server.cache.PSExitFlushCache

Interface:
com.percussion.extension.IPSRequestPreProcessor

Parameters

Name Data Type Description

htmlParamName java.lang.String The name of the application. The exit flushes items that match this
application name. To omit the parameter, set this value to an
empty string or null.

contentid java.lang.String A numeric content id. The exit flushes items that match this
content id. To omit the parameter, set this value to an empty string
or null.

revisionid java.lang.String A numeric revision id. The exit flushes items that match this
revision id. To omit the parameter, set this value to an empty
string or null. If contentvalue is null or empty, then this
parameter's value must be null or empty also.

variantid java.lang.String A numeric variant id. The exit flushes items that match this variant
id. To omit the parameter, set this value to an empty string or null.

Examples:
The following parameters cause the exit to flush all pages that the application casArticle assembles:

Parameter Value

appname "casArticle"

contentid ""

revisionid ""

variantid ""

The following parameters cause the exit to flush pages that include any Variant of the content item with content ID
125, revision ID 1:

 Chapter 8 Extensions 241

Parameter Value

appname ""

contentid "125"

revisionid "1"

variantid ""

 The following parameters cause the exit to flush pages that include any variant with the specified variant ID:

Parameter Value

appname ""

contentid ""

revisionid ""

variantid "14"

sys_GetSessionVariable

Context:
Java/global/percussion/generic/

Description:
This pre-exit gets a variable from session object and populates an html parameter with it in response to a
query. Use this with sys_SetSessionVariable, which stores a variable from an html query parameter.

Class name:
com.percussion.extensions.general.PSGetSessionVariable

Interface:
com.percussion.extension.IPSRequestPreProcessor

Parameters:
None

242 Rhythmyx Technical Reference Manual

sys_imageInfoExtractor

Name:
sys_imageInfoExtractor

Context:
Java/global/percussion/exit/

Description:
Automatically extracts Image height and width when uploaded using a sys_file control, in addition to the
filename, ext, type, and size parameters extracted by sys_FileInfo Exit.

Class name:
com.percussion.extensions.general.PSImageInfoExtractor

Interface:
com.percussion.extension.IPSRequestPreProcessor

Parameters
None

sys_MakeDeleteTableRowsXMLDoc

Context:
Java/global/percussion/general/

Description:
This exit builds an XML document that consists of a list of content items for deletion by the Rhythmyx
update resource. The DTD for the document is:

<!ELEMENT deleterows (row*) >
<!ELEMENT row (#PCDATA)>
<!ATTLIST row pkey CDATA #IMPLIED>

Place this exit on a Rhythmyx update resource that deletes the rows from one or more backend tables.
Map the XML element pkey to the primary key in the backend table(s).

Class name:
com.percussion.extensions.general.PSMakeDeleteRowsXmlDoc

 Chapter 8 Extensions 243

Interface:
com.percussion.extension.IPSRequestPreProcessor

Parameters

Name Data Type Description

keyParameterName String Name of the html parameter that has the key parameter value(s)

sys_NullIf

Context:
Java/global/percussion/extensions/general

Description:
Sets the specified fields to null if their value matches the compareTo value. The comparison is case-
sensitive.

For example, if you import the table values “Title,” “Mr.,” “Mrs,” and “Ms,” into the field
Customer_Title in a drop list, you could use this exit to reset the field with value “Title,” which should not
be included in the drop list, to null. In this example, you would set compareTo to Title and p1 to
Customer_Title.

Class name:
com.percussion.extensions.general.PSNullIf

Interface:
com.percussion.extension.IPSRequestPreProcessor

Parameters

Name Data Type Description

compareTo java.lang.String Value that will be converted to null.

p1 java.lang.String Name of first parameter to check.

p2 java.lang.String Name of second parameter to check.

p3 java.lang.String Name of third parameter to check.

. . .

pN java.lang.String Name of nth parameter to check.

244 Rhythmyx Technical Reference Manual

sys_ParameterTokenizer

Context:
Java/global/percussion/generic

Description:
This pre-exit splits input parameters with delimiters into a series of lists for input. This exit supports 3
delimiters: semicolon, period, and comma.

Example:
The related content search screen contains a series of checkboxes. The value of each checkbox contains
the contentid and variantid of the inserted child document separated by a delimiter. All of the checkboxes
have the same name. This results in a list of values in an ArrayList.

The function of this exit is to parse the delimited array into two or more other arrays. The number of
arrays parsed depends on the number of parameters passed.

There are N parameters:
CheckBoxArrayName
FirstOutputArrayName
SecondOutputArrayName

etc, etc.

Class name:
com.percussion.extensions.general.PSParameterTokenizer

Interface:
com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name Data Type Description

InputListName java.lang.String Name of the input HTML parameter

FirstOutputName java.lang.String Name of the first output HTML parameter

SecondOutputName java.lang.String Name of the second output parameter

ThirdOutputName java.lang.String Name of the third output parameter

FourthOutputName java.lang.String Name of the fourth output parameter

FifthOutputName java.lang.String Name of the fifth output parameter

SixthOutputName java.lang.String Name of the sixth output parameter

SeventhOutputName java.lang.String Name of the seventh output parameter

 Chapter 8 Extensions 245

sys_PrepareInClause

Context:
java/global/percussion/generic

Description:
This exit formats a string from all objects in a Collection that is a valid "IN" clause for a SQL query. It
stores the result in an HTML parameter, and it performs a toString() on each object in the Collection. The
result does not include the parentheses.

Example:
The sys_ca application uses this exit to convert the "RoleNames" object into an HTML parameter for use
in a select statement. As the following Exit Properties dialog shows, paramObject stores the object, and
baseName stores the HTML parameter created from paramObject. In this example, the list object has one
value, "RoleNames" and the select parameter created from the value is "sys_userrolenames." If
paramObject had no value, the HTML parameter would take the default value of "sys_noSuchRoleName."

246 Rhythmyx Technical Reference Manual

 Chapter 8 Extensions 247

The select clause that uses the HTML parameter is the following:

Class name:
com.percussion.extensions.general.PSPrepareInClause

Interface:
com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name Data Type Description

baseName java.lang.String The base name to use for the parameter created. May not be null or
empty.

paramObject java.lang.Object An object implementing the java.util.Collection interface containing
the values necessary for creating the values of the "IN" clause. May
not be null, but may be empty.

defaultValue java.lang.String A value to use in the event that the Collection is null or empty. If this
value is not null, it is used if the Collection does not have at least one
value that resolves to a non-empty string when toString() is called.

248 Rhythmyx Technical Reference Manual

sys_removeControlChars

Name:
sys_removeControlChars

Context:
Java/global/percussion/contenteditor/

Description:
This exit will remove control characters from all fields in a content editor. These characters are illegal in
XML and will cause an exception if they are left in.

This exit should be added to Content Editor resources that use third-party applications (such as Microsoft
Word) to edit text, and then only if the text edited in those applications contain control characters. If you
encounter “Invalid XML character” errors when editing Content Items, try adding this exit to the Content
Editor resource.

Class name:
com.percussion.ce.PSRemoveControlChars

Interface:
com.percussion.extension.IPSRequestPreProcessor

Parameters:
None

sys_SetArrayHtmlParameter

Name:
sys_SetArrayHtmlParameter

Context:
global/percussion/extensions/general/

Description:
Sets an HTML Parameter to the request with an array list of values. Makes an internal request to the
request specified in the resourceName parameter and returns a list of values from the element specified in
the elementName parameter. The number of result values returned can be limited by specifying a value
for the maxNumber parameter in the exit, or by including the maxNumber parameter in the HTML
request. The maxNumber parameter in an HTML request has a higher precedence than the maxNumber
parameter in the exit..

 Chapter 8 Extensions 249

Class:
com.percussion.extensions.general.PSSetArrayHtmlParameter

Interface:
com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name Data Type Description

paramName java.lang.String Required. Name of the HTML parameter whose
value you want to set.

resourceName java.lang.String Required. Specifies the name of the resource from
which to request the data for the HTML parameter.

elementName java.lang.String Required. The name of the XML element from
which the values will be extracted.

maxNumber java.lang.String Optional. If specified, only the specified number of
values will be added to the HTML parameter defined
in the paramName parameter of the exit. If this
value is not specified, and if the HTML request does
not include a maxNumber parameter, the list of
values returned will be unrestricted.

To control whether the first or last values in the list
are returned, define a sort order in the Rhythmyx
request. This exit always takes the first n values in
the returned set.

sys_SetProviderTypeInstance

Context:
Java/global/percussion/system/

Description:
This pre-exit splits the security provider information into provider type and instance, thus creating 2
HTML parameters for queries.

This exit is necessary because the request gives the security provider type and instance as a single
parameter in the format 'providerType/instance,' but the backend treats them as separate fields.

Class name:
com.percussion.security.PSSetProviderTypeInstance

250 Rhythmyx Technical Reference Manual

Resource file:
classes

Interface:
com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name Data Type Description

securityParameterName java.lang.String Optional. Security Provider Information. If null or
empty, defaults to sys_securityProvider.

separator java.lang.String Optional. Separator that splits the security provider
information. If null or empty, defaults to /.

providerTypeParamName java.lang.String Optional. HTML Parameter name for security
provider type query. If null or empty, defaults to
sys_spType.

securityInstanceParamName java.lang.String Optional. HTML Parameter name for security
provider instance query. If null or empty, defaults
to sys_spInstance.

sys_SetSessionVariable

Context:
Java/global/percussion/generic/

Description:
This pre-exit stores the value of a private session object based upon the value in an html request
 parameter. Use this with sys_GetSessionVariable, which accesses the information requested by a query.

Class name:
com.percussion.extensions.general.PSSetSessionVariable

Interface:
com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name Data Type Description

param_name java.lang.String Name of html parameter

 Chapter 8 Extensions 251

sys_TextExtraction

Name:
sys_TextExtractor

Context:
Java/global/percussion/contenteditor/

Description:
This pre-exit extracts the text and metadata in a binary or HTML (XML files cannot be processed by Text
Extraction) file uploaded to a Rhythmyx Content Editor and inserts the extracted data into a Content
Editor field (or fields). The exit formats the extracted text as plain text.

An exit that uploads external files to Rhythmyx, either sys_fileInfo (on page 238) or
sys_imageInfoExtractor (on page 242) always precedes sys_TextExtractor.

For information about performing text extraction with this exit, see "Implementing Text Extraction" in the
document Rhythmyx Implementation Guide.

Class name:
com.percussion.content.PSFileConverterExit

Interface:
com.percussion.extension.IPSRequestPreProcessor

Parameters

Name Data Type Description

Source java.lang.String Source file parameter. Enter the parameter that
holds the source file. Required.

Note: If a file upload control uploads the file, it
inserts the file object into the Content Editor field.
If Web Services upload the file (if you use
WebDAV), they insert the base64 encoded data
contained in the file into the Content Editor field.
Therefore, if the Content Editor field does not hold
a file object, the exit assumes it is base64 encoded
data and treats it as such.

OutputParam java.lang.String Name of a parameter or the Content Editor field that
stores the extracted data. Required.

FileTypeParam java.lang.String Name of a parameter or the Content Editor field that
stores the original file’s Mime type. Optional.

252 Rhythmyx Technical Reference Manual

Name Data Type Description

ErrorMessageParam java.lang.String Name of a parameter or the Content Editor field that
stores error messages. When used, the Content Item
is saved. Optional, but if not supplied, the extension
throws exceptions for errors and does not save the
Content Item.

Note: If you are updating a Content Item, and you
specify this field, if an error occurs, the exit saves
the changed Content Item and the originally
extracted text is lost.

OutputEncoding java.lang.String Encoding to use for output character set. Default is
WINDOWS-1252. If you are using a multi-byte
character type, you must specify the correct output
encoding. Valid values are:

WINDOWS-1252 – standard Windows encoding
Shift_JIS – encoding for Japanese characters

EUC_KR – encoding for Korean characters

GB2312 – Encoding for Simple Chinese characters

Big5 – Encoding for traditional Chinese characters

Note: Multi-byte characters are commonly used to
represent ideograms in Asian languages such as
Chinese.

If the implementer overrides any text extractors used for the full-text search, the new text extractors are
used in this exit. For more information about overriding the default text extractors, see the Search
Configuration section in the Rhythmyx Server Administrator online help.

sys_UploadFileAttributes

Context:
Java/global/percussion/generic/

Description:
This exit calculates the file size of an uploaded file in bytes and optionally gets the current date/time to be
used as a modified date. It appends the modified date using an HTML parameter. Use this exit on an
update resource that uploads a file to the database.

Class name:
com.percussion.extensions.general.PSUploadFileAttrs

 Chapter 8 Extensions 253

Interface:
com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name Data Type Description

FileNameParam String HTML Parameter name from the form that posts the
file to server.

For example, if FileNameParam is contentbody, the file
upload/download manager always uploads the file with
contentbody as a form field.

FileSizeParam String Name of the HTML parameter that stores the file size.
Always literal. This is used in the mapper to put the size
value into the database.

DateParam String Optional. Name of the HTML parameter that gets the
current datetime stamp. Always literal. This is used in
the mapper to put the file modified date in the database.

DateFormatString String Optional. Datetime format string. Always literal. For
example, yyyy/MM/dd hh:mm:ss. Note that this may
depend on the backend in which the file is saved.
Default is MM/dd/yyyy hh:mm:ss a

 FileSizeMax String Optional. Maximum size limit for the file. If the file
exceeds this value, the exit throws an exception.

sys_wfAuthenticateUser

Context:
Java/global/percussion/workflow

Description:
This exit authenticates the current user for the user's role(s).

Class name:
com.percussion.workflow.PSExitAuthenticateUser

254 Rhythmyx Technical Reference Manual

Interface:
com.percussion.extension.IPSRequestPreProcessor

Parameters:

 Name Data Type Description

ContentID java.lang.Integer Content ID.

UserName java.lang.String Name of the current user.

RoleNameList java.lang.String Comma separated list of roles for this
user.

CheckInOutCondition java.lang.String Whether or not to process. Continue
process if this condition is met. Valid
values are "ignore", "checkin" and
"checkout."

RequiredAccessLevel java.lang.Integer Minimum access level required to
authenticate the user. 1 - None, 2 -
Reader and above, 3 - Assignee and
above

sys_wfDisallowUpdatePublished

Context:
Java/global/percussion/workflow

Description:
This exit prevents updating of a document that is in the publish state.

Class name:
com.percussion.workflow.PSExitDisallowUpdatePublished

Interface:
com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name Data Type Description

ContentID java.lang.Integer Content ID.

 Chapter 8 Extensions 255

sys_wfNextNumber

Context:
Java/global/percussion/workflow

Description:
This exit gets the next number required for new unique IDs in the table inserts.

Class name:
com.percussion.workflow.PSExitNextNumber

Interface:
com.percussion.extension.IPSRequestPreProcessor

Parameters:

 Name Data Type Description

htmlParamName java.lang.String Name of the html parameter to return the next number
value.

htmlParamKey java.lang.String Name of the key for which the number is attributed. For
example, the table name.

sys_wfNextNumberSecondary

Context:
Java/global/percussion/workflow

Description:
This exit the gets next number required for new unique IDs in the table inserts.

Class name:
com.percussion.workflow.PSExitNextNumber

Interface:
com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name Data Type Description

htmlParamName java.lang.String Name of the html parameter to return next number value.

256 Rhythmyx Technical Reference Manual

Name Data Type Description

htmlParamKey java.lang.String Name of the key for which the number is attributed. For
example, the table name.

sys_wfPerformTransition

Context:
Java/global/percussion/workflow

Description:
This exit performs a valid transition and changes the content state accordingly.

Class name:
com.percussion.workflow.PSExitPerformTransition

Interface:
com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name Data Type Description

ContentID java.lang.Integer Content ID.

UserName java.lang.String Name of the current user.

ActionTriggerName java.lang.String Unique action trigger (checkin, checkout or any
transition trigger).

sys_wfPrepareQueryFilter

Context:
Java/global/percussion/workflow

Description:
Prepares filter(s) for the query depending on the user's roles and stores the filter(s) in an HTML parameter.

Class name:
com.percussion.workflow.PSExitPrepareQueryFilters

 Chapter 8 Extensions 257

Interface:
com.percussion.extension.IPSRequestPreProcessor

Parameters

Name Data Type Description

UserName java.lang.String Name of the current user.

 RoleNameList java.lang.String Comma separated list of user's roles.

sys_xdDomToFile

Context:
Java/global/percussion/xmldom

Description:
This pre-exit copies a temporary XML document as a text object into a temporary file. The user can map
this file to a backend column using the destination name. This exit differs from sys_xdDomToText
 because it inserts the result in a temporary file. Use this exit if you have an XML file that you have
converted to a DOM object using sys_xdTextToDom, and want to store the DOM object in the database
as a file.

Class name:
com.percussion.xmldom.PSXdDomToFile

Interface:
com.percussion.extension.IPSRequestPreProcessor

Parameters

Name Data Type Description

SourceObjectName java.lang.String Name of source document object (the temporary
XML document object). Use "InputDocument" to
insert an uploaded XML document. Default is
XMLDOM.

SourceNode java.lang.String Name of node within the source document to copy.
To copy the entire document, leave blank or set to
"." .

DestinationName java.lang.String The name of the HTML parameter name that stores
the reference to the temporary file. The exit stores
the object as a temporary binary file.

258 Rhythmyx Technical Reference Manual

Name Data Type Description

Encoding java.lang.String Java name of encoding the exit uses when writing
the file. If this is not specified, the exit uses the
default platform.

sys_xdDomToText

Context:
Java/global/percussion/xmldom

Description:
Pre-exit or post-exit that transfers an XML document into a string for insertion as a single field either on
insert or update or as the result of a query.

Class name:
com.percussion.xmldom.PSXdDomToText

Interface:
com.percussion.extension.IPSResultDocumentProcessor

Interface:
com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name Data Type Description

SourceObjectName java.lang.String Name of source document object

SourceNode java.lang.String Name of node within source document. Use
"InputDocument" if the source is an uploaded XML
document. To copy the entire document, leave blank or
set to "." Default is XMLDOM.

DestinationName java.lang.String Field or node where exit stores results. When this is
used as a pre-exit, an HTML parameter name; when
this is used as a post-exit, the name of an XML node
added beneath the "Document Element" of the result
document.

 Chapter 8 Extensions 259

sys_xdDomToParams

Context:
Java/global/percussion/xmldom

Description:
This pre-exit copies the children of <PSXParam> elements to HTML parameters. Use this exit to
simplify processing of multiple HTML parameters (instead of performing multiple calls to
sys_xdDomToText). The exit assumes the input document has the format:

<PSXParam>

 <param1>value1</param1>

 <param2>value2</param2>

 <param3>value3</param3>

<PSXParam>

It creates an HTML parameter from each element in the source XML document using the element name as
the parameter name and the element value as the parameter value. The new parameters are then set into
the HTML parameter map.

If you include appendParameter and set it to "yes," the exit converts <PSXParam> elements with
repeating nodes by storing each repeating node value in an array; otherwise, the exit replaces the value of
the HTML parameter with each new value that it finds for it, so only the last repeating value is saved. For
example, if an application simulates checkboxes, and produces an input document formatted like:

<PSXParam>

 <checkbox>value1</checkbox>

 <checkbox>value2</checkbox>

 <checkbox>value3</checkbox>

<PSXParam>

if you include appendParameter="yes" the checkbox parameter = [value1,value2,value3] (an array list).
Otherwise, the checkbox parameter = value3 (a string).

Class name:
com.percussion.xmldom.PSXdDomToParams

260 Rhythmyx Technical Reference Manual

Interface:
com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name Data Type Description

sourceName java.lang.String Name of source XML document object. Use "InputDocument"
if the source is an uploaded XML document.

appendParameter java.lang.String Optional. If appendParameter is set to "yes," all values of
elements in the input doc are stored in an array. If
appendParameter is not included or set to "no," each value of
an element in the input doc replaces the previous value found
for the element.

sys_xdProcessRelatedLinks

Name:
sys_xdProcessRelatedLinks

Context:
Java/global/percussion/xmldom/

Description:
This pre-exit scans a DOM tree for inline related links and images. It processes related links that are in
the format:

<a href="http://RXServer:RxPort/Rhythmyx/AppName/Request.html?
 sys_contentid=123&sys_variantid=1">

and adds extra parameters for sys_contentid and sys_variantid. It performs this processing
for all links and images, or any other <html> element that contains src= or href= attributes.

Class name:
com.percussion.xmldom.PSXdProcessRelatedLinks

Interface:
com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name Data Type Description

SourceObject java.lang.String Name of XMLDOM private object. Use "InputDocument" if the
source is an uploaded XML document. Default is XMLDOM.

 Chapter 8 Extensions 261

sys_xdTextToDom

Context:
Java/global/percussion/xmldom

Description:
Pre- or post-exit that parses an input text source and produces a DOM document.

Class name:
com.percussion.xmldom.PSXdTextToDom

Interface:
com.percussion.extension.IPSResultDocumentProcessor

Interface:
com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name Data Type Description

sourceName java.lang.String For a pre-exit, the name of the HTML parameter or
attached file containing the source. For a post-exit, the
name of the node containing the source.

DOMName java.lang.String Name of Temporary DOM Object. Default is
"XMLDOM."

tidyProperties java.lang.String Optional. Name of Tidy Properties file.

serverPageTags java.lang.String Optional. Name of ServerPageTags file

encodingDefault java.lang.String Optional. Java name for character encoding of the
source text. The value only affects uploaded files and
overrides any value supplied by the browser.

sys_xdTextCleanup

Name:
sys_xdTextCleanup

Context:
Java/global/percussion/xmldom/

262 Rhythmyx Technical Reference Manual

Description:
This pre-exit parses an input text source and produces a DOM document instead of a private object, then
turns the <body> field back into a text object, replacing the original text field. The input text source can
be an HTML parameter (for example, the DHTML editor) or an uploaded file. The exit scans the tree for
inline related links unless the InLineDisable parameter is set to "Y".

Class name:
com.percussion.xmldom.PSXdTextCleanup

Interface:
com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name Data Type Description

SourceName java.lang.String Name of source parameter. For a pre-exit, an HTML
parameter or an attached file. For a post-exit, a node.

TidyProperties java.lang.String Optional. Name of Tidy Properties file.

ServerPageTags java.lang.String Optional. Name of ServerPageTags file.

encodingDefault java.lang.String Java encoding name to use for files. The value only
affects uploaded files and overrides any value supplied
by the browser.

DisableInlineLink java.lang.String Flag for disabling scanning of inline links. Set to "Y" to
disable scanning of Inline Related Links.

AvoidTidyPrettyPrint java.lang.String Optional. Flag for using Document Builder's toString
function instead of tidy's pretty print. Set to "yes" to use
Document Builder's toString function; set to anything
else to use tidy's pretty print.

When you include sys_xdTextCleanup on a content
editor application that uses the editor, Rhythmyx
automatically sets this parameter to "yes" to avoid loss
of blank lines in the HTML editor.

sys_xdTransformDom

Context:
Java/global/percussion/xmldom

Description:
Pre-exit or post-exit that runs the source DOM through an XSL stylesheet. It parses the result with the
XML parser and stores it in the destination object. To ensure that the output is well-formed, use
<xsl:output method="xml">.

 Chapter 8 Extensions 263

The XSL stylesheet must reside in the current application directory. To do this, attach it to a query in the
current application.

Class Name:
com.percussion.xmldom.PSXdTransformDom

Interface:
com.percussion.extension.IPSResultDocumentProcessor,
com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name Data Type Description

sourceObjectName java.lang.String Optional. Source object name. Default is "XMLDOM."

When used as a pre-exit, the special XML document name
InputDocument may be used to refer to the input XML
document (usually, this document is provided by the
PSXmlUploader).

When used as a post-exit, the special XML document
name ResultDocument may be used. This name refers to
the document passed as an argument to the exit (the
document created by the Rhythmyx mapper).

StyleSheet java.lang.String Stylesheet name within current application.

destObjectName java.lang.String Optional. Destination object name. Can be the same as the
source DOM name.

sys_xdTransformDomToText

Context:
Java/global/percussion/xmldom

Description:
Pre-exit or post-exit that transforms an XML document and stores the result as text. The output is not
parsed, and therefore does not have to be well-formed. The stylesheet may create XML, HTML or plain
text.

Class name:
com.percussion.xmldom.PSXdTransformDomToText

264 Rhythmyx Technical Reference Manual

Interface:
com.percussion.extension.IPSResultDocumentProcessor,
com.percussion.extension.IPSRequestPreProcessor

Parameters:

Name Data Type Description

sourceObjectName java.lang.String Name of source DOM object.

May be the special XML document name
InputDocument when used as a pre-exit. This name
refers to the input XML document. Usually, this
document is provided by the PSXmlUploader.

May be the special XML document name
ResultDocument when used as a post-exit. This name
refers to the document passed as an argument to the
exit (the document created by the Rhythmyx
mapper).

StyleSheet java.lang.String Stylesheet within the current application. This file
must be stored in the current application's directory.

destObjectName java.lang.String Name of destination parameter or node.

In a pre-exit, the value is always an HTML
parameter.

In a post-exit, the name of an XML node added
beneath the "Document Element" of the result
document. If you use a multiple-level name, only the
last node is replaced. For example, if you use the
name, category/firstnode, category must exist in the
document. The exit creates firstnode, or replaces its
first occurrence.

User Defined Function Processing

sys_Add

Context:
Java/global/percussion/generic/

Description:
This exit adds 2 UDF-supplied operands and returns the result.

Class name:
com.percussion.extensions.general.PSSimpleJavaUdf_add

 Chapter 8 Extensions 265

Interface:
com.percussion.extension.IPSUdfProcessor

Parameters:

Name Data Type Description

leftOp java.lang.Number Left hand operator

rightOp java.lang.Number Right hand operator

sys_casGenerateAssemblerLink

Name:
sys_casGenerateAssemblerLink

Context:
Java/global/percussion/assemblers/

Description:
Generates an internal URL to the assembler for the specified variant that includes the parameters
sys_contentid, sys_revision, sys_context, sys_variantid, sys_authtype, and pssessionid.

Class name:
com.percussion.cas.PSGenerateAssemblerLink

Interface:
com.percussion.extension.IPSUdfProcessor

Parameters

Name Data Type Description

variantid java.lang.String Variant id of the desired assembler (required)

contentid java.lang.String Optional override of sys_contentid

revision java.lang.String Optional override of sys_revision

authtype java.lang.String Optional override of sys_authtype

266 Rhythmyx Technical Reference Manual

sys_casGeneratePubLocation

Name:
sys_casGeneratePubLocation

Context:
Java/global/percussion/contentassembler/

Description:
This exit generates the public location for context sensitive data in a Rhythmyx resource. The preview
generator is hardcoded. The exit obtains the generator for all other contexts from the table
RXLOCATIONSCHEME.

Class name:
com.percussion.cas.PSGeneratePubLocation

Interface:
com.percussion.extension.IPSUdfProcessor

Parameters:

Name Data Type Description

variantid java.lang.Object Required. The variantid for which this exit creates location
URLs.

contentid java.lang.Object Optional. The contentid for which this exit creates location
URLs. If not provided the exit uses the contentid of the
current request.

revision java.lang.Object Optional. The revision for which this exit creates location
URLs. If not provided the exit uses the revision of the current
request.

context java.lang.Object Optional. If supplied, the exit uses this context instead of the
context specified by the sys_context parameter.

siteid java.lang.Object Optional If supplied, the specified target siteid is used
instead of the default value specified by the HTML parameter
sys_siteid.

siteFolderid java.lang.Object Optional. If supplied, the specified folderid is used instead of
the default value specified by the HTML parameter
sys_folderid.

authtype java.lang.Object Optional. If supplied, the specified authtype overrides the
value specified by the HTML parameter sys_authtype.

 Chapter 8 Extensions 267

sys_DefaultPasswordFilter

Context:
Java/global/percussion/filter/

Description:
This exit takes a plain text string (a password) and encrypts it for a Rhythmyx security provider.

Class name:
com.percussion.filter.DefaultPasswordFilter

Interface:
com.percussion.security.IPSPasswordFilter

Parameters:
No user-supplied parameters. The server automatically supplies the password to the extension.

sys_Base64Decoder

Context:
Java/global/percussion/generic/

Description:
This exit decodes a base64 string to a string, and optionally character encodes the return string.

Class name:
com.percussion.extensions.general.Base64Decoder

Interface:
com.percussion.extension.IPSUdfProcessor

Parameters:

Name Data Type Description

encodedText java.lang.String The text to decode.

charEncoding java.lang.String The character encoding to use when creating the return string.

268 Rhythmyx Technical Reference Manual

sys_Base64Encoder

Context:
Java/global/percussion/generic/

Description:
This exit encodes a normal text string to base64 string, and optionally character encodes the return string.
 Use this to encrypt passwords.

Class name:
com.percussion.extensions.general.Base64Encoder

Interface:
com.percussion.extension.IPSUdfProcessor

Parameters:

Name Data Type Description

encodedText java.lang.String The text to encode.

charEncoding java.lang.String The character encoding to use when creating the return
string.

sys_Concat

Context:
Java/global/percussion/generic/

Description:
This exit concatenates up to 5 text strings.

Class name:
com.percussion.extensions.general.PSSuperConcat

Interface:
com.percussion.extension.IPSUdfProcessor

Parameters

Name Data Type Description

p1 java.lang.String First text string

 Chapter 8 Extensions 269

Name Data Type Description

p2 java.lang.String Second text string

p3 java.lang.String Third text string

p4 java.lang.String Fourth text string

p5 java.lang.String Fifth text string

sys_DateAdjust

Context:
Java/global/percussion/generic/

Description:
This exit updates the date according to the command of a corresponding user defined function (UDF) call.
There are up to six calendar fields which can be adjusted: year, month, day, hour, minute, and second.
These fields are integers; non-integers will be truncated. (Users are responsible for making these fields
integers.)

Prior to the exit running, the user must define seven objects through the GUI. The first object is a string
representing a date. The other six objects are numbers representing the quantity by which to adjust the
date. The date string should be in a format recognizable by the Rhythmyx server's PSDataConverter,
otherwise the exit throws an exception.

Class name:
com.percussion.extensions.general.PSSimpleJavaUdf_dateAdjust

Interface:
com.percussion.extension.IPSUdfProcessor

Parameters:

Name Data Type Description

date java.util.Date The date to modify

years java.lang.Number The number of years to adjust date

months java.lang.Number The number of months to adjust date

days java.lang.Number The number of days to adjust date

hours java.lang.Number The number of hours to adjust date

minutes java.lang.Number The number of minutes to adjust date

seconds java.lang.Number The number of seconds to adjust date

270 Rhythmyx Technical Reference Manual

sys_Divide

Context:
Java/global/percussion/generic/

Description:
This exit divides operand 1 by operand 2 and returns the result as a float. operand 1 and operand 2 are
supplied by a UDF.

Class name:
com.percussion.extensions.general.PSSimpleJavaUdf_divide

Interface:
com.percussion.extension.IPSUdfProcessor

Parameters

Name Data Type Description

leftOp java.lang.Number Operand 1 (dividend)

rightOp java.lang.Number Operand 2 (divisor)

sys_GetBase64EncodedBody

Context:
Java/global/percussion/generic

Description:
This exit retrieves the HTML document specified by the URL parameter, extracts the information between
the <BODY> tags, base64 encodes it, and returns it as a String.

This enables users to publish partial pages, such as snippets or SSIs to a database during database
publishing.

Class name:
com.percussion.extensions.general.PSGetBase64EncodedBody

 Chapter 8 Extensions 271

Interface:
com.percussion.extension.IPSUdfProcessor

Parameters

Name Data Type Description

resource Java.lang.String The resource URI. Full, partial and relative
URI's are supported and can have parameters.
The supplied parameters are appended to the
end. The pssessionid is always appended. Only
HTTP requests are made, even if the fully
qualified URI uses HTTPS. Relative URI's
must be relative from the application root
directory.

paramName1 java.lang.String Optional. Name of the first HTML parameter.

paramValue1 java.lang.String Optional. Value of the first HTML parameter.

ParamName2 java.lang.String Optional. Name of the second HTML
parameter.

ParamValue2 java.lang.String Optional. Value of the second HTML
parameter.

ParamName3 java.lang.String Optional. Name of the third HTML parameter.

ParamValue3 java.lang.String Optional. Value of the third HTML parameter.

ParamName4 java.lang.String Optional. Name of the fourth HTML
parameter.

ParamValue4 java.lang.String Optional. Value of the fourth HTML
parameter.

ParamName5 java.lang.String Optional. Name of the fifth HTML parameter.

ParamValue5 java.lang.String Optional. Value of the fifth HTML parameter.

ParamName6 java.lang.String Optional. Name of the sixth HTML parameter.

ParamValue6 java.lang.String Optional. Value of the sixth HTML parameter.

ParamName7 java.lang.String Optional. Name of the seventh HTML
parameter.

ParamValue7 java.lang.String Optional. Value of the seventh HTML
parameter.

ParamName8 java.lang.String Optional. Name of the eighth HTML
parameter.

ParamValue8 java.lang.String Optional. Value of the eighth HTML
parameter.

ParamName9 java.lang.String Optional. Name of the ninth HTML parameter.

ParamValue9 java.lang.String Optional. Value of the ninth HTML parameter.

272 Rhythmyx Technical Reference Manual

Name Data Type Description

ParamName10 java.lang.String Optional. Name of the tenth HTML parameter.

ParamValue10 java.lang.String Optional. Value of the tenth HTML parameter.

sys_GetBase64Encoded

Context:
Java/global/percussion/generic/

Description:
This exit takes the same parameters as the exit sys_MakeIntLink, but instead of returning the URL string,
it gets the contents with the built URL, and returns it as a base64 encoded string.

Class name:
com.percussion.extensions.general.PSGetBase64Encoded

Interface:
com.percussion.extension.IPSUdfProcessor

Parameters:

Name Data Type Description

resource Java.lang.String The resource which will be looked up through an internal
request and its base64 encoded response will be returned.

paramName1 java.lang.String Optional. Name of the first HTML parameter.

paramValue1 java.lang.String Optional. Value of the first HTML parameter.

ParamName2 java.lang.String Optional. Name of the second HTML parameter.

ParamValue2 java.lang.String Optional. Value of the second HTML parameter.

ParamName3 java.lang.String Optional. Name of the third HTML parameter.

ParamValue3 java.lang.String Optional. Value of the third HTML parameter.

ParamName4 java.lang.String Optional. Name of the fourth HTML parameter.

ParamValue4 java.lang.String Optional. Value of the fourth HTML parameter.

ParamName5 java.lang.String Optional. Name of the fifth HTML parameter.

ParamValue5 java.lang.String Optional. Value of the fifth HTML parameter.

ParamName6 java.lang.String Optional. Name of the sixth HTML parameter.

ParamValue6 java.lang.String Optional. Value of the sixth HTML parameter.

ParamName7 java.lang.String Optional. Name of the seventh HTML parameter.

ParamValue7 java.lang.String Optional. Value of the seventh HTML parameter.

 Chapter 8 Extensions 273

Name Data Type Description

ParamName8 java.lang.String Optional. Name of the eighth HTML parameter.

ParamValue8 java.lang.String Optional. Value of the eighth HTML parameter.

ParamName9 java.lang.String Optional. Name of the ninth HTML parameter.

ParamValue9 java.lang.String Optional. Value of the ninth HTML parameter.

ParamName10 java.lang.String Optional. Name of the tenth HTML parameter.

ParamValue10 java.lang.String Optional. Value of the tenth HTML parameter.

sys_GetFileSize

Context:
Java/global/percussion/extensions/general

Description:
This exit is required for the BEA accelerator. If you want to publish to the standard BEA setup, you need
the size of the document (it is a non-nullable column in their DOCUMENT table).

Class Name:
com.percussion.extensions.general.PSGetFileSize

Interface:
com.percussion.extension.IPSUdfProcessor

Parameters:

Name Data Type Description

resource Java.lang.String The resource which will be looked up through an internal
request and its size will be returned.

paramName1 java.lang.String Optional. Name of the first HTML parameter.

paramValue1 java.lang.String Optional. Value of the first HTML parameter.

ParamName2 java.lang.String Optional. Name of the second HTML parameter.

ParamValue2 java.lang.String Optional. Value of the second HTML parameter.

ParamName3 java.lang.String Optional. Name of the third HTML parameter.

ParamValue3 java.lang.String Optional. Value of the third HTML parameter.

ParamName4 java.lang.String Optional. Name of the fourth HTML parameter.

ParamValue4 java.lang.String Optional. Value of the fourth HTML parameter.

ParamName5 java.lang.String Optional. Name of the fifth HTML parameter.

274 Rhythmyx Technical Reference Manual

Name Data Type Description

ParamValue5 java.lang.String Optional. Value of the fifth HTML parameter.

ParamName6 java.lang.String Optional. Name of the sixth HTML parameter.

ParamValue6 java.lang.String Optional. Value of the sixth HTML parameter.

ParamName7 java.lang.String Optional. Name of the seventh HTML parameter.

ParamValue7 java.lang.String Optional. Value of the seventh HTML parameter.

ParamName8 java.lang.String Optional. Name of the eighth HTML parameter.

ParamValue8 java.lang.String Optional. Value of the eighth HTML parameter.

ParamName9 java.lang.String Optional. Name of the ninth HTML parameter.

ParamValue9 java.lang.String Optional. Value of the ninth HTML parameter.

ParamName10 java.lang.String Optional. Name of the tenth HTML parameter.

ParamValue10 java.lang.String Optional. Value of the tenth HTML parameter.

sys_Literal

Context:
Java/global/percussion/generic/

Description:
This exit converts the UDF-supplied parameter to a string and returns it.

Class name:
com.percussion.extensions.general.PSSimpleJavaUdf_literal

Interface:
com.percussion.extension.IPSUdfProcessor

Parameters:

Name Data Type Description

p1 java.lang.Object The source object

sys_MakeAbsLink

Context:
Java/global/percussion/generic

 Chapter 8 Extensions 275

Description:
This exit creates an absolute URL with up to 6 name/value pairs specified in the parameters.

A URL has the following pieces for purposes of this description
<scheme>://<host><path-segments><resource>?<query>#<fragment>

Five basic forms are allowed for the supplied URL:

Fully qualified (e.g. http://server:9992/Rhythmyx/approot/res.html

Partially qualified (e.g. /Rhythmyx/approot/res.html)

Relative (e.g. ../myApp/res.html)

Resource name only (e.g. res.html)

An empty string
Any of these forms may contain a query and fragment part. The exit assumes that any relative url is
relative from the originating request's app root. If the supplied URL is fully qualified and the protocol is
not 'http', the exit returns the supplied URL, unmodified. Otherwise, it substitutes any pieces supplied. If
the supplied URL is not fully qualified,the exit adds the missing parts using the values from the
originating request. For a partially qualified name, it adds the http protocol, server and port to the supplied
name. For an unqualified name, it adds these items, plus the Rhythmyx request root and the originating
application request root. For a relative name, it adds the http protocol, server, port, and Rhythmyx root,
assuming the name is relative from the originating request's app root. For an empty string, it uses all parts
of the originating request, substituting the supplied parameters. If the port is 80, it does not add a port
number to the generated url.

Multiple name/value pairs may be specified for the parameters. For example, if the following were
supplied as parameters:

 resource = query1.html

 param1 = city

 value1 = Boston

 param2 = state

 value2 = MA

then the exit would generate the following URL (assuming the request was targeted directly at the
Rhythmyx server):
http://rxserver:9992/Rhythmyx/MyApp/query1.html?city=Boston&state=MA</p
>

Note: The resource may contain parameters defined on it, in which case the exit appends the supplied
parameters after the last parameter defined.

Class name:
com.percussion.extensions.general.PSMakeAbsLink

276 Rhythmyx Technical Reference Manual

Interface:
com.percussion.extension.IPSUdfProcessor

Parameters:

Name Data Type Description

resource java.lang.String Relative resource without the parameters.

paramName1 java.lang.String Optional. Name of the first HTML parameter.

paramValue1 java.lang.String Optional. Value of the first HTML parameter.

paramName2 java.lang.String Optional. Name of the second HTML parameter.

paramValue2 java.lang.String Optional. Value of the second HTML parameter.

paramName3 java.lang.String Optional. Name of the third HTML parameter.

paramValue3 java.lang.String Optional. Value of the third HTML parameter.

paramName4 java.lang.String Optional. Name of the fourth HTML parameter.

paramValue4 java.lang.String Optional. Value of the fourth HTML parameter.

paramName5 java.lang.String Optional. Name of the fifth HTML parameter.

paramValue5 java.lang.String Optional. Value of the fifth HTML parameter.

paramName6 java.lang.String Optional. Name of the sixth HTML parameter.

 paramValue6 java.lang.String Optional. Value of the sixth HTML parameter.

sys_MakeAbsLinkSecure

Context:
Java/global/percussion/generic

Description:
This exit creates an absolute URL with up to 6 name/value pairs specified in the parameters. It is identical
to sys_MakeAbsLink, except, if the supplied URL is fully qualified and specifies the https
(javascript:BSSCPopup('https.htm')) protocol, the link is generated using https instead of http
(javascript:BSSCPopup('http.htm')) . If the supplied URL is not fully qualified or does not specify https
protocol, the link is generated using http.

A URL has the following pieces for purposes of this description:
<scheme>://<host><path-segments><resource>?<query>#<fragment>

Five basic forms are allowed for the supplied URL:

Fully qualified (e.g. https://server:9443/Rhythmyx/approot/res.html

Partially qualified (e.g. /Rhythmyx/approot/res.html)

Relative (e.g. ../myApp/res.html)

Resource name only (e.g. res.html)

javascript:BSSCPopup('https.htm')
javascript:BSSCPopup('http.htm')

 Chapter 8 Extensions 277

An empty string
Any of these forms may contain a query and fragment part. The exit assumes that any relative url is
relative from the originating request's app root. If the supplied URL is fully qualified and the protocol is
not 'http' or 'https', the exit returns the supplied URL, unmodified. Otherwise, it substitutes any pieces
supplied. If the supplied URL is not fully qualified, the exit adds the missing parts using the values from
the originating request. For a partially qualified name, it adds the http or https protocol, server and port to
the supplied name. For an unqualified name, it adds these items, plus the Rhythmyx request root and the
originating application request root. For a relative name, it adds the http or https protocol, server, port, and
Rhythmyx root, assuming the name is relative from the originating request's app root. For an empty
string, it uses all parts of the originating request, substituting the supplied parameters. If protocol of the
URL is http and the port is 80, it does not add a port number to the generated URL.

The first parameter, useSecure, specifies whether to use https or http. If the value of this parameter is
yes, and the original request used a secure channel or the supplied URL specifies https, the UDF uses
https; if the value of the parameter is anything else, it uses http regardless of the protocol used by the
original request.

Multiple name/value pairs may be specified for the parameters. For example, if the following were
supplied as parameters:

 useSecure=yes
 resource = query1.html
 param1 = city
 value1 = Boston
 param2 = state
 value2 = MA

then the exit would generate the following URL (assuming the request was targeted directly at the
Rhythmyx server and was made on a secure server):

https://rxserver:9443/Rhythmyx/MyApp/query1.html?city=Boston&state=MA</p>

Note: The resource may contain parameters defined on it, in which case the exit appends the supplied
parameters after the last parameter defined.

Input parameters and resulting protocol and port used

useSecure Original Request
Protocol

Supplied URL
Protocol

Resulting
Protocol

Resulting port

no HTTP none HTTP originating request's port

no HTTPS none HTTP Rhythmyx server's default
port

yes HTTP none HTTP originating request's port

yes HTTPS none HTTPS originating request's port

no HTTP HTTP HTTP port from supplied URL

no HTTPS HTTP HTTP Rhythmyx server's default
port

no HTTP HTTPS HTTP originating request's port

278 Rhythmyx Technical Reference Manual

Input parameters and resulting protocol and port used

useSecure Original Request
Protocol

Supplied URL
Protocol

Resulting
Protocol

Resulting port

no HTTPS HTTPS HTTP Rhythmyx server's default
port

yes HTTP HTTP HTTP port from supplied URL

yes HTTPS HTTP HTTP port from supplied URL

yes HTTP HTTPS HTTPS port from supplied URL

yes HTTPS HTTPS HTTPS port from supplied URL

Class name:
com.percussion.extensions.general.PSMakeAbsLinkSecure

Interface:
com.percussion.extension.IPSUdfProcessor

Parameters:

Name Data Type Description

useSecure java.lang.String Required. Flag specifying whether or not to use a
secure connection. Enter yes to specify use of
https for a secure connection; enter no (or any
value other than yes) to specify use of http for a
non-secure connection.

resource java.lang.String Optional. Relative resource without the
parameters.

paramName1 java.lang.String Optional. Name of the first HTML parameter.

paramValue1 java.lang.String Optional. Value of the first HTML parameter.

 paramName2 java.lang.String Optional. Name of the second HTML parameter.

paramValue2 java.lang.String Optional. Value of the second HTML parameter.

paramName3 java.lang.String Optional. Name of the third HTML parameter.

paramValue3 java.lang.String Optional. Value of the third HTML parameter.

paramName4 java.lang.String Optional. Name of the fourth HTML parameter.

paramValue4 java.lang.String Optional. Value of the fourth HTML parameter.

paramName5 java.lang.String Optional. Name of the fifth HTML parameter.

paramValue5 java.lang.String Optional. Value of the fifth HTML parameter.

paramName6 java.lang.String Optional. Name of the sixth HTML parameter.

paramValue6 java.lang.String Optional. Value of the sixth HTML parameter.

 Chapter 8 Extensions 279

sys_MakeAbsLinkSecureEx

Context:
Java/global/percussion/generic

Description:
This exit creates an absolute URL with up to 10 name/value pairs. It is identical to
sys_MakeAbsLinkSecure except that it allows you to specify a host name and port. Typically, the host
specified is the name of the secure DNS server.

This UDF is preferred to the sys_MakeAbsLinkSecure UDF when using SSL for publishing.

Class name:
com.percussion.extensions.general.PSMakeAbsLinkSecureEx

Interface:
com.percussion.extension.IPSUdfProcessor

Parameters

Name Data Type Description

useSecure java.lang.String Optional. Flag specifying whether or not to use a secure connection.
 Enter yes to specify use of https for a secure connection; enter no (or
any value other than yes) to specify use of http for a non-secure
connection.

Defaults to yes.

host java.lang.String (Optional) The host name to be used to produce the output url. If not
specified, the host name of the originating request will be used.

port java.lang.String (Optional) The port to be used to produce the output url. If not specified,
the port of the originating request will be used, subject to the value of the
\"useSecure\".

resource java.lang.String Relative resource without the parameters.

paramName1 java.lang.String (Optional) Name of the first HTML parameter.

paramValue1 java.lang.String (Optional) Value of the first HTML parameter.

paramName2 java.lang.String (Optional) Name of the second HTML parameter.

paramValue2 java.lang.String (Optional) Value of the second HTML parameter.

paramName3 java.lang.String (Optional) Name of the third HTML parameter.

paramValue3 java.lang.String (Optional) Value of the third HTML parameter.

paramName4 java.lang.String (Optional) Name of the fourth HTML parameter.

280 Rhythmyx Technical Reference Manual

Name Data Type Description

paramValue4 java.lang.String (Optional) Value of the fourth HTML parameter.

paramName5 java.lang.String (Optional) Name of the fifth HTML parameter.

paramValue5 java.lang.String (Optional) Value of the fifth HTML parameter.

paramName6 java.lang.String (Optional) Name of the sixth HTML parameter.

paramValue6 java.lang.String (Optional) Value of the sixth HTML parameter.

paramName7 java.lang.String (Optional) Name of the seventh HTML parameter.

paramValue7 java.lang.String (Optional) Value of the seventh HTML parameter.

paramName8 java.lang.String (Optional) Name of the eighth HTML parameter.

paramValue8 java.lang.String (Optional) Value of the eighth HTML parameter.

paramName9 java.lang.String (Optional) Name of the ninth HTML parameter.

paramValue9 java.lang.String (Optional) Value of the ninth HTML parameter.

paramName10 java.lang.String (Optional) Name of the tenth HTML parameter.

paramValue10 java.lang.String (Optional) Value of the tenth HTML parameter.

sys_MakeIntLink

Context:
Java/global/percussion/generic

Description:
This exit creates an absolute URL with up to 10 name/value pairs and adds user session information. The
URL locates an internal resource.

The exit constructs a URL that the Rhythmyx server uses to make an internal request. Therefore, it differs
from sys_MakeAbsLink because it always constructs the URL using 127.0.01 (the local server address)
 and the Rhythmyx server port (usually 9992) regardless of what is supplied or what the originating
request used.

A URL has the following pieces for purposes of this description:
<scheme>://<host><path-segments><resource>?<query>#<fragment>

Five basic forms are allowed for the supplied URL:

 Fully qualified (e.g. http://server:9992/Rhythmyx/approot/res.html

 Partially qualified (e.g. /Rhythmyx/approot/res.html)

 Relative (e.g. ../myApp/res.html)

 Resource name only (e.g. res.html)

 An empty string

 Chapter 8 Extensions 281

Any of these forms may contain a query and fragment part. The exit assumes that any relative url is
relative from the originating request's app root. If the supplied URL is fully qualified and the protocol is
not 'http', it returns the supplied URL, unmodified. Otherwise, it substitutes any pieces supplied. If the
supplied URL is not fully qualified, it adds the missing parts using the values from the originating request
(except for the server address, which is always 127.0.0.1 and the port which is always the one on which
the Rhythmyx server is listening). For a partially qualified name, it adds the http protocol, server and port
to the supplied name. For an unqualified name, it adds these items, plus the Rhythmyx request root and the
originating application request root. For a relative name, it adds the http protocol, server, port, and
Rhythmyx root, assuming it is relative from the originating requests app root. For an empty string, it uses
all parts of the originating request, substituting the supplied parameters. If the port is 80, it does not add
the port number to the generated url.

Multiple name/value pairs may be specified for the parameters. For example, if the following were
supplied as parameters:

 resource = query1.html
 param1 = city
 value1 = Boston
 param2 = state
 value2 = MA

and the session identifier were sessionid, then the exit generates the following URL (the params do not
necessarily appear in the order presented):

http://rxserver:9992/Rhythmyx/MyApp/query1.html?pssessionid=sessionid&city=Boston&state=MA</p>

NOTE: The resource may contain parameters defined on it, in which case the exit appends the sessionid
after the last parameter defined.

Class name:
com.percussion.extensions.general.PSMakeIntLink

Interface:
com.percussion.extension.IPSUdfProcessor

Parameters:

Name Data Type Description

resource java.lang.String Relative resource without the parameters. Must be relative from the
application root directory.

paramName1 java.lang.String Optional. Name of the first HTML parameter.

paramValue1 java.lang.String Optional. Value of the first HTML parameter.

paramName2 java.lang.String Optional. Name of the second HTML parameter.

paramValue2 java.lang.String Optional. Value of the second HTML parameter.

paramName3 java.lang.String Optional. Name of the third HTML parameter.

paramValue3 java.lang.String Optional. Value of the third HTML parameter.

paramName4 java.lang.String Optional. Name of the fourth HTML parameter.

282 Rhythmyx Technical Reference Manual

Name Data Type Description

paramValue4 java.lang.String Optional. Value of the fourth HTML parameter.

 paramName5 java.lang.String Optional. Name of the fifth HTML parameter.

paramValue5 java.lang.String Optional. Value of the fifth HTML parameter.

paramName6 java.lang.String Optional. Name of the sixth HTML parameter.

paramValue6 java.lang.String Optional. Value of the sixth HTML parameter.

sys_MakeIntRequest

Context:
global/percussion/extensions/general/

Description:
This UDF lets users map an XML element assembled in an exit or a Rhythmyx application in the
Rhythmyx Workbench mapper. You can map any element in the XML to this UDF. The root of the XML
document returned by this request must match the name of the XML element to which the UDF is
mapped. Otherwise, the Rhythmyx server returns a runtime error.

For example, suppose you had the following mapping for this UDF:

In this example we map the element <RelatedContent> through sys_MakeIntRequest. This request must
return an element <RelatedContent>, similar tot he following example code:

<RelatedContent>
 <infourls actionlisturl="Text" activeiteminfourl="Text"
contentstatusurl="Text" userstatusurl="Text"/>
 <linkurl sys_context="Text" sys_slotid="Text" relateditemid="Text"
sys_contentid="Text" sys_variantid="Text" slotname="Text">
 <Value current="Text"/>
 </linkurl>
</RelatedContent>

The following code shows this XML included with the final output of the application:
<sys_AssemblerInfo previewurl="Text" sys_siteid="Text"
pssessionid="Text" sys_command="Text" sys_contentid="Text"
sys_variantid="Text" sys_revision="Text" sys_context="Text"
sys_authtype="Text" type="Text" outputformat="Text" xml:lang="Text">
 <RelatedContent>
 <infourls actionlisturl="Text" activeiteminfourl="Text"
contentstatusurl="Text" userstatusurl="Text"/>
 <linkurl sys_context="Text" sys_slotid="Text" relateditemid="Text"
sys_contentid="Text" sys_variantid="Text" slotname="Text">
 <Value current="Text"/>
 </linkurl>
 </RelatedContent>
 <AssemblerProperties>

 Chapter 8 Extensions 283

 <Property name="Text">
 <Value current="Text"/>
 </Property>
 </AssemblerProperties>
 <InlineLink url="Text"/>
</sys_AssemblerInfo>

Class name:
com.percussion.extensions.general.PSMakeInternalRequest

Interface:
com.percussion.extension.IPSUdfProcessor

Parameters:

Name Data Type Description

resource java.lang.String Required. The Rhythmyx resource to which to make an internal
request. Specifies the application and page of the dataset to which the
internal request is to be made. May be as brief as
appName/pageName or as extensive as
http://127.0.0.1:9992/Rhythmyx/AppTest/nov.xml?
alpha=bravo&test=5.

stylesheet java.lang.String Optional. The name of the stylesheet to be applied to the request result
document. The stylesheet must be stored in a Rhythmyx application. If
stored in the current application, just the file name is needed (e.g.
transform.xsl). For other applications use the relative path (e.g.
../sys_resources/stylesheets/transform.xsl).

inheritParams java.lang.String Optional. A flag to specify whether or not to inherit the original
request parameters for the internal request. Default is yes. Value is
case-insensitive.

paramName0 java.lang.String Optional. Name of the first HTML parameter. Parameter parsing stops
at the first NULL or empty parameter name.

paramValue0 java.lang.String Optional. Value of the first HTML parameter.

paramName1 java.lang.String Optional. Name of the second HTML parameter.

paramValue1 java.lang.String Optional. Value of the second HTML parameter.

paramName2 java.lang.String Optional. Name of the third HTML parameter.

paramValue2 java.lang.String Optional. Value of the third HTML parameter.

paramName3 java.lang.String Optional. Name of the fourth HTML parameter.

paramValue3 java.lang.String Optional. Value of the fourth HTML parameter.

paramName4 java.lang.String Optional. Name of the fifth HTML parameter.

paramValue4 java.lang.String Optional. Value of the fifth HTML parameter.

paramName5 java.lang.String Optional. Name of the sixth HTML parameter.

284 Rhythmyx Technical Reference Manual

Name Data Type Description

paramValue5 java.lang.String Optional. Value of the sixth HTML parameter.

paramName6 java.lang.String Optional. Name of the seventh HTML parameter.

paramValue6 java.lang.String Optional. Value of the seventh HTML parameter.

paramName7 java.lang.String Optional. Name of the eighth HTML parameter.

paramValue7 java.lang.String Optional. Value of the eighth HTML parameter.

paramName8 java.lang.String Optional. Name of the ninth HTML parameter.

paramValue8 java.lang.String Optional. Value of the ninth HTML parameter.

paramName9 java.lang.String Optional. Name of the tenth HTML parameter.

paramValue9 java.lang.String Optional. Value of the tenth HTML parameter.

sys_MakeLink

Context:
Java/global/percussion/generic

Description:
This exit creates a URL (as a string) with up to 6 name/value pairs. It creates the URL from the supplied
parameters and returns it. Up to 6 name/value pairs may be specified for the arguments. For example, if
the following were supplied as arguments:

 base = query1.html
 param1 = city
 value1 = Boston
 param2 = state
 value2 = MA

then it generates the following URL:
 query1f.html?city=Boston&state=MA

Note: The base may contain parameters defined on it, in which case the exit appends the supplied
parameters after the last parameter defined.

Class name:
com.percussion.extensions.general.PSMakeLink

Interface:
com.percussion.extension.IPSUdfProcessor

Parameters:

Name Data Type Description

baseUrl java.lang.String URL without the parameters.

 Chapter 8 Extensions 285

Name Data Type Description

paramName1 java.lang.String Optional. Name of the first HTML parameter.

paramValue1 java.lang.String Optional. Value of the first HTML parameter.

paramName2 java.lang.String Optional. Name of the second HTML parameter.

paramValue2 java.lang.String Optional. Value of the second HTML parameter.

paramName3 java.lang.String Optional. Name of the third HTML parameter.

paramValue3 java.lang.String Optional. Value of the third HTML parameter.

 paramName4 java.lang.String Optional. Name of the fourth HTML parameter.

paramValue4 java.lang.String Optional. Value of the fourth HTML parameter.

paramName5 java.lang.String Optional. Name of the fifth HTML parameter.

paramValue5 java.lang.String Optional. Value of the fifth HTML parameter.

paramName6 java.lang.String Optional. Name of the sixth HTML parameter.

paramValue6 java.lang.String Optional. Value of the sixth HTML parameter.

sys_Multilpy

Context:
Java/global/percussion/generic/

Description:
This exit multiplies operand 1 by operand 2 and returns the result. Operand 1 and operand 2 are supplied
by a UDF.

Class name:
com.percussion.extensions.general.PSSimpleJavaUdf_multiply

Interface:
com.percussion.extension.IPSUdfProcessor

Parameters:

Name Data Type Description

leftOp java.lang.Number Operand 1

rightOp java.lang.Number Operand 2

286 Rhythmyx Technical Reference Manual

sys_Subtract

Context:
Java/global/percussion/generic/

Description:
This exit subtracts operand 1 from operand 2 and returns the result.

Class name:
com.percussion.extensions.general.PSSimpleJavaUdf_subtract

Interface:
com.percussion.extension.IPSUdfProcessor

Parameters:

Name Data Type Description

leftOp java.lang.Number Operand 1

rightOp java.lang.Number Operand 2

sys_wfGetCheckOutUserStatus

Context:
Java/global/percussion/workflow

Description:
This exit returns a String that represents the status of the current document. Three values are possible:

0 - Not checked out

1 - Checked out by current user

2 - Checked out by another user

 Chapter 8 Extensions 287

Class name:
com.percussion.workflow.PSGetCheckOutStatusUdf

Interface:
com.percussion.extension.IPSUdfProcessor

Parameters:

Name Data Type Description

userName java.lang.String The name of the user that currently has the document checked
out. Usually obtained from a backend column in the
CONTENTSTATUS table.

Workflow Action Processing

sys_TouchParentItems

Name:
sys_TouchParentItems

Context:
Java/global/percussion/extensions/general/

Description:
This action touches all "parent" (Owner) items of the current item in Relationships whose Category is
Active Assembly. It finds all Ancestors of the Content Item in Active Assembly Relationships and updates
them by putting the current date/time and current user name in the CONTENTLASTMODIFIEDDATE
and CONTENTLASTMODIFIER columns of the CONTENTSTATUS table.

This exit uses the following resources in the sys_ceDependency application:

 parents.xml query - this resource must have a "pipe name" of parents.
 touchitem.xml - an update resource (with a pipe name of touchitem. this resource updates the

CONTENTSTATUS table. The only parameter of touchitem.xml is sys_contentid. This
parameter specifies a list of content IDs as a {link java.util.ArrayList ArrayList} object.

Class name:
com.percussion.extensions.general.PSTouchParentItems

288 Rhythmyx Technical Reference Manual

Resource file:
classes

Interface:
com.percussion.extension.IPSWorkflowAction

Parameters:
None

sys_createTranslations

Name:
sys_createTranslations

Context:
global/percussion/workflow/

Description:
This action creates a Translation Content Item of the original Content Item in each Locale in which the
original Content Item does not already have a corresponding Translation Content Item. The action uses a
configuration file, sys_createTranslations.properties, which is located in the directory
<Rhythmyxroot>/rxconfig/i18n. This file defines the type of Translation Relationship to create between
the original Content Item and the Translation Content Item for each Locale. It also defines a list of
Locales for which Translation Content Items will not be generated.

Class Name;
com.percussion.workflow.PSCreateTranslations

Resource File:
rxconfig/I18n/sys_createTranslations.properties

Interface:
com.percussion.extension.IPSWorkflowAction

Parameters:
None

 289

Index

A
About the Rhythmyx Technical Reference

Manual • 9
Action menu entries • 159
Adding Custom Menu and Toolbar Actions • 41,

42
Adding Form and Script Support to a

sys_EditLive Control • 58
Adding Macros to the Snippet Drawer • 86, 94
Adding the sys_EditLive Control to a Content

Editor • 58
Adding the sys_WebImageFX Control to a

Content Editor • 67
Alphabetical Reference to Rhythmyx Extensions

• 188, 190
Alternate Hibernate Session Connections to the

Rhythmyx Datasource • 172
Apache Commons • 172
Apache MyFaces • 158
Assembly Extensions • 98
Assembly Plugin Processing • 80
Assembly Plugins • 98
Assembly Processing • 79, 143
Assembly Reference • 75
Assembly Utilities • 133

B
Basic Editing Operations • 34
Best Practices

sys_EditLive • 58
sys_WebImageFX • 45

Binary Command • 162, 169
Binary Fields • 156
binaryAssembler • 99, 185, 188

C
Calendar fields • 46
Catalogers • 175
Check boxes • 47, 48, 63, 68
Choice lists for controls • 68
Clone Command • 162, 170
Code and Decode Utilities • 134, 186, 188

Conditional Processing Utilities • 135, 186, 188
Configuring Logging • 172, 178
Configuring Unpublish Flags • 125
Content Editor Configuration • 12, 14
Content Editor Control Reference • 38
Content Editor Extensions • 19
Content Editor Request Parameters • 161
Content Editor System Definition Reference • 70
Content editors • 13, 14

system fields • 70
Content items • 11, 16
Content List Generators • 118, 121, 126
Content Processing • 12, 16
Content Reference • 11
Control Events • 39
Control Header • 38
Control Template Standards • 39
Controlling Processing of XML files • 61
Controls, Content Editor • 38, 45, 46, 47, 48, 50,

51, 52, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67
Custom • 38, 39, 40, 42, 43, 44, 45

Creating an Internal Lookup Query • 49, 68
Creating New Child Entries • 36
Creating New Content Items • 34
Custom implementations • 158, 159, 172, 175,

177
Custom Implementations • 154
Customizing • 40, 42
Customizing Controls • 40
Customizing EditLive! for Java Configuration •

40, 42
Customizing the EditLive! for Java Editor • 40
Customizing the sys_EditLive control • 40
Customizing the sys_EditLiveDynamic control •

42
Customizing the sys_WebImageFX Control • 44
Customizing the WebImageFX Editor • 43

D
Data, accessing • 159
Database Utilities • 136, 186, 188
databaseAssembler • 99, 185, 188
Datasource, non-Rhythmyx • 173
Datasource, Rhythmyx, connecting to • 172
DBActionType • 161
debugAssembler • 100, 185, 188
Defining Non-Rhythmyx Datasources • 173
Delivery Handlers • 119, 121, 129
Demand Publishing • 124
Deploying a Transaction Service • 158

290 Index

dispatchAssembler • 100, 185, 188
Document Pre-processors • 19, 33
Document Utilities • 136, 186, 188
Drop down lists • 50, 68

E
Edit Command • 161, 162
Edit Live for Java • 40, 42, 51, 52, 57, 58, 59
Editing Complex Child Data • 36
EditLive for Java Editor • 51
Ektron • 44
Embedding Velocity Code in Templates • 86
Encryption • 176

Password • 176
Exits • 33
Extending Java Server Faces Page Flows • 158
Extending Publishable States • 112
Extension Utilities • 137, 186, 188
Extensions • 179, 180

Extensions, Types • 19, 23, 24, 30, 33, 144,
147, 176

Legacy • 190
Registering • 181

Extensions Reference by Type • 185, 190

F
Field Macros • 87
Field Transformers • 19, 23
Field Validations • 19
File Locations • 158
Filter a Content List • 144, 145, 146
Filter Rule Extensions • 144

G
General Requirements of Extensions • 19, 24,

33, 98, 102, 113, 126, 127, 129, 132, 144, 147,
149, 180

Generating a List of Slot Contents • 106
getRemoteUser() • 155
GUID Utilities • 137, 186, 188

H
Handling PSItemStatus • 155
Hibernate • 76, 156, 157, 172
HibernateDaoSupport • 156
Hiding fields • 62

I
Image editor • 43, 44, 45, 64, 65, 67
Image fields • 43, 44, 45, 64, 65, 67

Implementing Custom Authentication • 174
Implementing Custom Java Server Pages and

Servlets • 154
Implementing Custom Login Pages • 175
Implementing Transactional Services • 156
Input Transformers • 24
Integrating Content Explorer Action Menu

Entries • 159
Internationalization Utilities • 138, 186, 188
IPSExtension • 180
IPSPasswordFilter • 176
IPSRequestContext • 159
IPSRhythmyxInfo • 158, 159
IPSRoleCataloger • 175
IPSSubjectCataloger • 175
Item Filters and Filter Rules • 98, 110, 118, 121,

144
Item Transformers • 19, 33
Item Validations • 19

J
JAAS • 174
Java Content Repository • 98, 143
Java Expression Language (JEXL) • 77, 132
Java plugin • 179, 180, 181
Java Server Faces Page • 158
JavaScript • 38, 39, 181
JBoss • 154, 159, 172, 173, 174
JCR Queries • 128, 143
JEXL • 20, 28, 76, 126, 132, 135, 147, 148, 180,

185
JEXL Extensions • 98, 132
JNDI Datasource • 172
JSF Page • 158
JSP • 154, 159, 177

K
Keyword Utilities • 135, 186, 188

L
Legacy Extension Reference • 33, 147, 190
legacyAssembler • 101, 185, 188
Link Generation and Context • 132, 147
Link Utilities • 138, 186, 188
Linking items on a site • 147, 148
Loading Existing Child Entries • 37
Loading Existing Content Items • 34
Location Scheme Generator Extensions • 98, 147
Location Utilities • 139
log4j • 172, 178

 Index 291

Logging • 172, 178
Logging for Custom Implementations • 172
Logical Architecture • 12, 13, 108, 118

Assembly • 76
Logical Architecture and Processing • 12, 108,

118
Assembly • 76

Login • 174, 175

M
Macros • 85, 86, 87, 94
Managing Revisions • 35
Manipulating Fields • 35
Miscellaneous Macros • 93
Modify Command • 162, 167
Modifying Child Fields • 37
MyFaces • 158

N
Navigation Utilities • 140, 186, 188
Non-Text Request Parameters • 171

O
Obtaining Slots • 106
Obtaining the User and Session • 155
Output Transformers • 30

P
Pagination Utilities • 141
Password Filters • 176
Plugins • 179
Plugins, Assembly • 76, 80
Post-exits • 33
Pre-exits • 33
prepareForEdit() • 34, 35, 155
Preview Command • 161, 164
Processing

Content Engine • 13, 14, 16, 18
Search • 18, 73, 74
Search and Replace • 73, 74

PSItemStatus, storing information • 155
Publishing Extensions • 126
Publishing Processing • 120
Publishing Reference • 117

Q
Query Request Parameters • 160

R
Radio buttons • 62, 68

Recursive Content Roll-up • 83
Registering an Extension • 180, 181
Relate Command • 170
Removing Child Entries • 37
Request parameters • 160, 161, 162, 164, 167,

169, 170, 171
Request Preprocessing • 228
Requests to Applications • 160
Result Document Processing • 190
Result Document Processors • 19, 33
Rhythmyx Request Context • 159
Rhythmyx Server Information • 159
Rhythmyx, JBoss, and JAAS • 174
Rich text controls • 40, 42, 51, 52, 57, 58, 59
Role and Subject Catalogers • 174, 175, 176
Role Catologer • 175
Rules for Custom Login Modules • 174
rxs_AutoSiteItemFilter • 193
rxs_NavAddAttribute • 194
rxs_NavAutoSlot • 194
rxs_NavFolderSelector • 195
rxs_NavReset • 196
rxs_NavTreeBuilder • 196
rxs_NavTreeLink • 196
rxs_NavTreeSlotMarker • 196
rxs_SiteFolderAssembly • 192
rxs_SiteFolderContentListBuilder • 190
rxs_SiteFolderContentListBulkBuilder • 191

S
Saving Child Entries • 37
Saving Content Items • 35
Scheduled Tasks • 149
Search • 18, 73, 74
Search and Replace • 73, 74
Search indexing • 73, 74
Search Indexing • 73
Search Processing • 12, 18
Search Reference • 73
Security • 174
Security Extensions • 176
Security for Custom Web Applications • 177
Service Implementation • 156
Service Interface • 156
Service Locator • 157, 158
Servlet • 76, 79, 154, 155, 157, 159, 171, 175,

177
ServletRequest • 159
Shared Features • 131
SimpleDateFormat • 46

292 Index

Slot Content Finders • 98, 102
Slot Macros • 90
Snippet Drawer • 86, 87, 94
Snippets • 83, 86, 94
Spring • 76, 156, 157, 158, 171, 177
Spring Bean • 157
Spring beans • 171
Spring Configurations • 129, 171
Standard Rhythmyx Controls • 45
Standard Velocity Macros • 86
String Utilities • 142, 186, 188
Subject Cataloger • 175
sys_Add • 264
sys_AddCurrentDateTime • 228
sys_AutoSlotContentFinder • 102, 186, 188
sys_Base64Decoder • 267
sys_Base64Encoder • 268
sys_caDeleteContent • 229
sys_CalendarSimple • 46
sys_casAddAssemblerInfo • 197
sys_casAddChildInfo • 198
sys_casAutoRelatedContent • 199
sys_casConcatAssemblyLocation • 230
sys_casConcatWithIdAssemblyLocation • 230
sys_casDefaultAssemblyLocation • 231
sys_casGenerateAssemblerLink • 265
sys_casGeneratePubLocation • 266
sys_casGenericAssemblyLocation • 232
sys_casModifyRelatedContent • 233
sys_ceDependencyTree • 200
sys_CheckBoxGroup • 47
sys_CheckBoxTree • 48
sys_cmpAddAllParamsToUrl • 200
sys_cmpMenuTree • 201
sys_CollapseHTMLParameter • 202, 234
sys_command • 161
sys_commAuthenticateUser • 234
sys_Concat • 268
sys_ConvertCustomSearchOperator • 235
sys_CopyParameter • 238
sys_createTranslations • 113, 187, 188, 288
sys_DatabasePublisher • 203, 205
sys_DateAdjust • 269
sys_DateFormat • 30, 186
sys_DateFormatEx • 31, 186
sys_DefaultPasswordFilter • 176, 267
sys_Divide • 270
sys_DropDownMultiple • 50
sys_DropDownSingle • 50
sys_EditBox • 51

sys_EditLive • 40, 42, 51, 52, 57, 58, 59
sys_EditLive Control • 40, 42, 52, 57, 58, 59
sys_EditLiveDynamic • 42, 57
sys_EditLiveDynamic Control • 57
sys_eWebEditPro • 59
sys_File • 60, 61, 65, 239
sys_FileInfo • 60, 66, 67, 238, 251
sys_filterByFolderPaths • 145, 186, 188
sys_filterByPublishableFlag • 146, 186, 188
sys_filterBySiteFolder • 146, 186, 188
sys_FlushAssemblerCache • 240
sys_FlushCache • 239
sys_FormatDate • 31, 186, 188
sys_FormatFileTree • 204
sys_ftUploadAppendFileAttributes • 205
sys_GetBase64Encoded • 272
sys_GetBase64EncodedBody • 270
sys_GetFileSize • 273
sys_GetSessionVariable • 241
sys_HiddenInput • 62
sys_imageInfoExtractor • 242, 251
sys_IncrementalContentFilter • 206
sys_JexlAssemblyLocation • 148, 186, 188
sys_LegacyAutoSlotContentFinder • 102, 186,

188
sys_ListTemplateExpander • 127, 187, 188
sys_Literal • 274
sys_LoadChildData • 208
sys_MakeAbsLink • 274
sys_MakeAbsLinkSecure • 276
sys_MakeAbsLinkSecureEx • 279
sys_MakeDeleteTableRowsXMLDoc • 242
sys_MakeIntLink • 280
sys_MakeIntRequest • 282
sys_MakeLink • 284
sys_ManagedNavContentFinder • 104, 186, 188
sys_MapInputValue • 24, 185, 189
sys_MapOutputValue • 32, 186, 189
sys_ModifyXmlHierarchy • 209
sys_Multilpy • 285
sys_NormalizeDate • 24, 185, 189
sys_NullIf • 243
sys_OverrideLiteral • 25, 185
sys_ParameterTokenizer • 244
sys_PrepareInClause • 245
sys_pubCreatePublisherConfig • 211
sys_PublishContent • 114, 187, 189, 211
sys_PublishEditionForPreview • 212
sys_PublishedSiteItems • 126, 185
sys_purgePublishingLog • 150

 Index 293

sys_purgeScheduledTaskLog • 151
sys_RadioButtons • 62
sys_RelationshipContentFinder • 104, 187, 189
sys_removeControlChars • 248
sys_Replace • 25, 185
sys_ReplaceResultDocument • 213
sys_runCommand • 151
sys_runEdition • 152
sys_SearchGenerator • 128, 185, 189
sys_SelectedItemsGenerator • 127, 185, 189
sys_ServerUserRoleSearch • 215
sys_SetArrayHtmlParameter • 248
sys_SetCookie • 216
sys_SetEmptyXmlStyleSheet • 217
sys_SetProviderTypeInstance • 249
sys_SetSessionVariable • 250
sys_SingleCheckBox • 63
sys_SiteTemplateExpander • 129, 187, 189
sys_Subtract • 286
sys_Table • 63
sys_TextArea • 64
sys_TextExtraction • 251
sys_ToHash • 26, 185
sys_ToLowerCase • 27, 185
sys_ToProperCase • 27, 185
sys_TouchParentItems • 116, 187, 189, 287
sys_ToUpperCase • 28, 185
sys_TranslateJexlExpressionValue • 28, 185,

189
sys_TranslationContentFinder • 105, 187, 189
sys_Trim • 29
sys_TrimString • 29, 186, 189
sys_UploadFileAttributes • 252
sys_ValidateDateRange • 20, 185, 189
sys_ValidateJexlFieldExpression • 20, 185, 189
sys_ValidateNumberRange • 21, 185, 189
sys_ValidateRequiredField • 22, 185, 189
sys_ValidateStringLength • 22, 185, 189
sys_ValidateStringPattern • 23, 185, 189
sys_WebImageFX • 40, 43, 44, 45, 64, 65, 67
sys_WebImageFX and the WebImageFX Editor

• 64
sys_WebImageFX Control • 65, 239
sys_wfAddPossibleTransitions • 218
sys_wfAppendWorkflowActions • 218
sys_wfAuthenticateUser • 253
sys_wfDisallowUpdatePublished • 254
sys_wfExecuteActions • 219
sys_wfGetCheckOutUserStatus • 286
sys_wfNextNumber • 255

sys_wfNextNumberSecondary • 255
sys_wfPerformTransition • 256
sys_wfPrepareQueryFilter • 256
sys_wfPreviewWorkflow • 219
sys_wfSendNotifications • 220
sys_wfUpdateHistory • 220
sys_xdCopyDom • 221
sys_xdDomToFile • 257
sys_xdDomToParams • 259
sys_xdDomToText • 222, 258
sys_xdMultiTextToTree • 225
sys_xdProcessRelatedLinks • 260
sys_xdRemoveElements • 222
sys_xdTextCleanup • 261
sys_xdTextToDom • 224, 261
sys_xdTextToTree • 224
sys_xdTransformDom • 226, 262
sys_xdTransformDomToText • 227, 263
System

Architecture • 13, 76, 108
System Issues • 153

T
Table fields • 63
Template Expanders • 119, 121, 127
Templates • 80, 83, 85, 86, 87, 94
Text Analyzers • 73, 74
Text boxes • 51, 64
Text Extractors • 73

U
Update Request Parameters • 161
Upgrading from sys_eWebEditPro to

sys_EditLive • 59
Uploading files into fields • 60, 61
User Defined Function Processing • 264

V
Velocity • 85, 86, 87, 94
Velocity in Rhythmyx • 85, 86
velocityAssembler • 101, 185, 189

W
Web Applications • 177
WebImageFX Editor • 40, 43, 44, 45
Workflow Action Processing • 287
Workflow Actions • 113
Workflow Command • 162, 169
Workflow Processing • 110
Workflow Reference • 107

294 Index

Writing Assembly Extensions • 105
Writing Content Editor Extensions • 34
Writing Custom Controls • 38

X
XSL • 38

	About the Rhythmyx Technical Reference Manual
	Content Reference
	Logical Architecture and Processing
	Logical Architecture
	Content Editor Configuration
	Content Processing
	Search Processing

	Content Editor Extensions
	Item Validations
	Field Validations
	sys_ValidateDateRange
	sys_ValidateJexlFieldExpression
	sys_ValidateNumberRange
	sys_ValidateRequiredField
	sys_ValidateStringLength
	sys_ValidateStringPattern

	Field Transformers
	Input Transformers
	sys_MapInputValue
	sys_NormalizeDate
	sys_OverrideLiteral
	sys_Replace
	sys_ToHash
	sys_ToLowerCase
	sys_ToProperCase
	sys_ToUpperCase
	sys_TranslateJexlExpressionValue
	sys_Trim
	sys_TrimString

	Output Transformers
	sys_DateFormat
	sys_DateFormatEx
	sys_FormatDate
	sys_MapOutputValue

	Item Transformers
	Document Pre-processors
	Result Document Processors
	Writing Content Editor Extensions
	Basic Editing Operations
	Creating New Content Items
	Loading Existing Content Items
	Managing Revisions
	Manipulating Fields
	Saving Content Items

	Editing Complex Child Data
	Creating New Child Entries
	Loading Existing Child Entries
	Modifying Child Fields
	Saving Child Entries
	Removing Child Entries

	Content Editor Control Reference
	Writing Custom Controls
	Control Header
	Control Template Standards
	Control Events

	Customizing Controls
	Customizing the EditLive! for Java Editor
	Customizing the sys_EditLive control
	Customizing EditLive! for Java Configuration
	Customizing the sys_EditLiveDynamic control
	Adding Custom Menu and Toolbar Actions

	Customizing the WebImageFX Editor
	Customizing the sys_WebImageFX Control
	Best Practices: sys_WebImageFX

	Standard Rhythmyx Controls
	sys_CalendarSimple
	sys_CheckBoxGroup
	sys_CheckBoxTree
	sys_DropDownMultiple
	sys_DropDownSingle
	sys_EditBox
	EditLive for Java Editor
	sys_EditLive Control
	sys_EditLiveDynamic Control
	Adding the sys_EditLive Control to a Content Editor
	Adding Form and Script Support to a sys_EditLive Control
	Best Practices: sys_EditLive
	Upgrading from sys_eWebEditPro to sys_EditLive

	sys_File
	Controlling Processing of XML files

	sys_HiddenInput
	sys_RadioButtons
	sys_SingleCheckBox
	sys_Table
	sys_TextArea
	sys_WebImageFX and the WebImageFX Editor
	sys_WebImageFX Control
	Adding the sys_WebImageFX Control to a Content Editor

	Creating an Internal Lookup Query

	Content Editor System Definition Reference
	Search Reference
	Search Indexing
	Text Extractors
	Text Analyzers

	Assembly Reference
	Logical Architecture and Processing: Assembly
	Logical Architecture: Assembly
	Assembly Processing
	Assembly Plugin Processing
	Recursive Content Roll-up

	Velocity in Rhythmyx
	Embedding Velocity Code in Templates
	Standard Velocity Macros
	Field Macros
	Slot Macros
	Miscellaneous Macros

	Adding Macros to the Snippet Drawer

	Assembly Extensions
	Assembly Plugins
	binaryAssembler
	databaseAssembler
	debugAssembler
	dispatchAssembler
	legacyAssembler
	velocityAssembler

	Slot Content Finders
	sys_AutoSlotContentFinder
	sys_LegacyAutoSlotContentFinder
	sys_ManagedNavContentFinder
	sys_RelationshipContentFinder
	sys_TranslationContentFinder

	Writing Assembly Extensions
	Obtaining Slots
	Generating a List of Slot Contents

	Workflow Reference
	Logical Architecture and Processing
	Logical Architecture
	Workflow Processing

	Extending Publishable States
	Workflow Actions
	sys_createTranslations
	sys_PublishContent
	sys_TouchParentItems

	Publishing Reference
	Logical Architecture and Processing
	Logical Architecture
	Publishing Processing

	Demand Publishing
	Configuring Unpublish Flags
	Publishing Extensions
	Content List Generators
	sys_PublishedSiteItems
	sys_SelectedItemsGenerator

	Template Expanders
	sys_ListTemplateExpander
	sys_SearchGenerator
	sys_SiteTemplateExpander

	Delivery Handlers

	Shared Features
	Java Expression Language (JEXL)
	JEXL Extensions
	Assembly Utilities
	Code and Decode Utilities
	Keyword Utilities
	Conditional Processing Utilities
	Database Utilities
	Document Utilities
	Extension Utilities
	GUID Utilities
	Internationalization Utilities
	Link Utilities
	Location Utilities
	Navigation Utilities
	Pagination Utilities
	String Utilities
	String Utilities

	Java Content Repository
	Item Filters and Filter Rules
	Filter Rule Extensions
	sys_filterByFolderPaths
	sys_filterByPublishableFlag
	sys_filterBySiteFolder

	Link Generation and Context
	Location Scheme Generator Extensions
	sys_JexlAssemblyLocation

	Scheduled Tasks
	sys_purgePublishingLog
	sys_purgeScheduledTaskLog
	sys_runCommand
	sys_runEdition

	System Issues
	Custom Implementations
	Implementing Custom Java Server Pages and Servlets
	Obtaining the User and Session
	Handling PSItemStatus

	Implementing Transactional Services
	Service Interface
	Service Implementation
	Spring Bean
	Service Locator
	Deploying a Transaction Service

	Extending Java Server Faces Page Flows
	File Locations
	Rhythmyx Request Context
	Rhythmyx Server Information
	Integrating Content Explorer Action Menu Entries
	Requests to Applications
	Query Request Parameters
	Update Request Parameters
	Content Editor Request Parameters
	Edit Command
	Preview Command
	Modify Command
	Workflow Command
	Binary Command
	Clone Command
	Relate Command

	Non-Text Request Parameters

	Spring Configurations
	Alternate Hibernate Session Connections to the Rhythmyx Datasource
	Logging for Custom Implementations

	Defining Non-Rhythmyx Datasources
	Security
	Rhythmyx, JBoss, and JAAS
	Implementing Custom Authentication
	Rules for Custom Login Modules
	Role and Subject Catalogers

	Implementing Custom Login Pages
	Security Extensions
	Password Filters
	sys_DefaultPasswordFilter

	Security for Custom Web Applications

	Configuring Logging

	Extensions
	General Requirements of Extensions
	Registering an Extension
	Extensions Reference by Type
	Alphabetical Reference to Rhythmyx Extensions
	Legacy Extension Reference
	Result Document Processing
	rxs_SiteFolderContentListBuilder
	rxs_SiteFolderContentListBulkBuilder
	rxs_SiteFolderAssembly
	rxs_AutoSiteItemFilter
	rxs_NavAutoSlot
	rxs_NavAddAttribute
	rxs_NavFolderSelector
	rxs_NavTreeSlotMarker
	rxs_NavReset
	rxs_NavTreeLink
	rxs_NavTreeBuilder
	sys_casAddAssemblerInfo
	sys_casAddChildInfo
	sys_casAutoRelatedContent
	sys_ceDependencyTree
	sys_cmpAddAllParamsToUrl
	sys_cmpMenuTree
	sys_CollapseHTMLParameter
	sys_DatabasePublisher
	sys_FormatFileTree
	sys_ftUploadAppendFileAttributes
	sys_IncrementalContentFilter
	sys_LoadChildData
	sys_ModifyXmlHierarchy
	sys_pubCreatePublisherConfig
	sys_PublishContent
	sys_PublishEditionForPreview
	sys_ReplaceResultDocument
	sys_ServerUserRoleSearch
	sys_SetCookie
	sys_SetEmptyXmlStyleSheet
	sys_wfAddPossibleTransitions
	sys_wfAppendWorkflowActions
	sys_wfExecuteActions
	sys_wfPreviewWorkflow
	sys_wfSendNotifications
	sys_wfUpdateHistory
	sys_xdCopyDom
	sys_xdDomToText
	sys_xdRemoveElements
	sys_xdTextToDom
	sys_xdTextToTree
	sys_xdMultiTextToTree
	sys_xdTransformDom
	sys_xdTransformDomToText

	Request Preprocessing
	sys_AddCurrentDateTime
	sys_caDeleteContent
	sys_casConcatAssemblyLocation
	sys_casConcatWithIdAssemblyLocation
	sys_casDefaultAssemblyLocation
	sys_casGenericAssemblyLocation
	sys_casModifyRelatedContent
	sys_CollapseHTMLParameter
	sys_commAuthenticateUser
	sys_ConvertCustomSearchOperator
	sys_CopyParameter
	sys_FileInfo
	sys_FlushCache
	sys_FlushAssemblerCache
	sys_GetSessionVariable
	sys_imageInfoExtractor
	sys_MakeDeleteTableRowsXMLDoc
	sys_NullIf
	sys_ParameterTokenizer
	sys_PrepareInClause
	sys_removeControlChars
	sys_SetArrayHtmlParameter
	sys_SetProviderTypeInstance
	sys_SetSessionVariable
	sys_TextExtraction
	sys_UploadFileAttributes
	sys_wfAuthenticateUser
	sys_wfDisallowUpdatePublished
	sys_wfNextNumber
	sys_wfNextNumberSecondary
	sys_wfPerformTransition
	sys_wfPrepareQueryFilter
	sys_xdDomToFile
	sys_xdDomToText
	sys_xdDomToParams
	sys_xdProcessRelatedLinks
	sys_xdTextToDom
	sys_xdTextCleanup
	sys_xdTransformDom
	sys_xdTransformDomToText

	User Defined Function Processing
	sys_Add
	sys_casGenerateAssemblerLink
	sys_casGeneratePubLocation
	sys_DefaultPasswordFilter
	sys_Base64Decoder
	sys_Base64Encoder
	sys_Concat
	sys_DateAdjust
	sys_Divide
	sys_GetBase64EncodedBody
	sys_GetBase64Encoded
	sys_GetFileSize
	sys_Literal
	sys_MakeAbsLink
	sys_MakeAbsLinkSecure
	sys_MakeAbsLinkSecureEx
	sys_MakeIntLink
	sys_MakeIntRequest
	sys_MakeLink
	sys_Multilpy
	sys_Subtract
	sys_wfGetCheckOutUserStatus

	Workflow Action Processing
	sys_TouchParentItems
	sys_createTranslations

	Index

